

Crumpets - Delicious crumpets for training time

Pre-process and augment your data, use training primitives for deep learning.

Below you can find the full documentation and a useful Quick Start Guide.

Quick Start Guide

You are new to crumpets? Don’t worry. We have prepared an easy to follow
guide for first steps. Learn about how to use crumpet’s efficient data loading
utilities and training framework.

	Quick Start Guide
	1. Installation

	2. Data Processing

	3. Training

Data Augmentation

Crumpets offers a great variety of data augmentation operations.
All those are integrated in crumpet’s data loading pipeline, thus efficient and easy to use.
Here we present an overview of available augmentations and their usage.
On top of it you get the unique chance of seeing multiple pictures of sweet baby elephants!

	Augmentation Guide
	1. Usage

	2. List of Available Augmentations

Documentation

	crumpets package
	Subpackages

	Submodules

	crumpets.torch package
	Submodules

	crumpets.workers package
	Subpackages

	crumpets.workers.saliency package

	crumpets.workers.segmentation package

Examples

	examples package
	Submodules

Indices and tables

	Index

	Module Index

Further Information

Tough cookie.

Quick Start Guide

This tutorial introduces the basic concepts of how to use crumpets for efficient data processing in Deep Learning.

Crumpets has two important main functionalities.
The first one is providing a data processing pipeline using crumpets’ TurboDataLoader.
The other is offering a Trainer class, that can be used to train a given network.
These will be described in separate.
But first at all, how to install it?

1. Installation

Crumpets is pip-installable! Go to the root directory and execute:

>>> pip install .

It might also be useful to install crumpets.torch, which defines
torch dependent packages, like a fast TorchTurboDataLoader and DeepLearning Stuff.

>>> python setup-torch.py install

2. Data Processing

This part of the tutorial uses the both examples dataloader_simple.py and dataloader_datadings.py, which can be found
in crumpets.examples.
A crumpets TurboDataLoader (TDL) loads a given dataset and processes it efficiently.
A set of parameters allows modifying its behavior according to one’s individual requirements.
Setting up a TDL at least requires an iterable, a batch size, a worker tempalte and the number of workers.
Batch size and number of workers are self explaining.
So let’s first focus on the iterable and the worker template.

The iterable is what actually defines the dataset. As the name states, this in general can be of any type, but must
be something the Loader is able to iterate over, i.e. a set, list, tuple, or such.
In specific, the type of worker that is used defines what type the elements in the iterable have to be of,
since the workers implement the handling of those.
Crumpets predefined workers all expect msgpack [https://msgpack.org/] packed dictionaries.
So, for instance, having the dataset stored in an ImageNet style folder structure (see below),
we first need to preprocess that.

Folder Structure:

`– tinyset/

`– cat/

|– 1.jpg

|– 2.jpg

|– 3.jpg

|– 4.jpg

`– elephant/

|– 1.jpg

|– 2.jpg

|– 3.jpg

|– 4.jpg

Preprocessing Code:

def prepare_dataset():
 dsdir = 'tinyset'
 iterable = []
 # walk over all subdirectories containing the classes
 for cls_id, (cls_dir, _, imgs) in enumerate(list(os.walk(dsdir))[1:]):
 # inside a subdirectory specifying a class, walk over all images
 for img_path in imgs:
 # read the image
 with io.FileIO(pt.join(cls_dir, img_path)) as f:
 img = f.read()
 # put it inside a dictionary together with some class id
 dic = {'image': img, 'label': cls_id}
 # pack the dict using msgpack and append it to the result
 iterable.append(msgpack.packb(
 dic, use_bin_type=True,
 default=msgpack_numpy.encode
))
 return iterable

But for most datasets this code is unnecessary, because we also offer a python project named datadings [https://datadings.readthedocs.io].
With that one the usual datasets comfortably can be downloaded and preprocessed, using just one command.

Now, having the dataset in the correct format, we have to define a worker_template,
which the loader can use to generate worker instances from.
The loader later reads from the iterable and sends the elements to its workers, which process them.
In parallel, it receives the processed results in a consuming Thread and returns them, if asked for.
The worker template can be you own custom implementation, but should at least inherit
worker.
Usually it is a good idea to directly inherit BufferWorker, as that one
already implements the most basic stuff.
The most default predefined worker probably is the ClassificationWorker.
This one can be used, as the name states, for the standard Deep Learning Task, i.e. Classification.
The worker at least requires 2 parameters, image and label.
Both are 3-tuples defining the shape, dtype and fill_value of the corresponding input.
Shape and dtype are self-explaining. Fill_value is optional.
For instance for Imagenet, we might want to define our template like this:

>>> w = ClassificationWorker(
 ((3, 224, 224), np.uint8),
 ((1,), np.int)
)

Having the worker defined and the data preprocessed, we finally can set up our TDL:

batch_size = 2
epochs = 3
nworkers = 2
sample_size = (3, 224, 224)

prepare iterable
iterable = prepare_dataset()
num_samples = len(iterable)
cycler = cycle(iterable) # necessary for multiple epochs

create loader
loader = TurboDataLoader(
 cycler, batch_size,
 ClassificationWorker(# Other workers are available, such as SaliencyWorkers
 (sample_size, np.uint8), ((1,), np.int),
 # this actually means using default augmentations, found in ~crumpets.randomization.randomize_args
 image_rng=AUGMENTATION_TRAIN
),
 nworkers,
 length=num_samples,
)

This loader can now easily be used within a with-statement.
Note that iterating over the loader returns mini_batches.
The default value for that is 1, thus it returns a list of size 1.
But one can modify the parameters of the TDL to increase that number to overcome RAM limitations.

with loader:
 for epoch in range(epochs):
 for iteration, mini_batch in loader:
 for sample in mini_batch:
 image = sample['image']
 label = sample['label']

3. Training

The training tutorial refers to both examples pytorch_cifar10.py and pytorch_resnet.py found in crumpets.examples.
At the current state of crumpets the only Deep Learning framework that is supported is pytorch [https://pytorch.org/].
This step of the tutorial thus uses that one and therefore it is necessary to install crumpets-torch in addition to
the standard crumpets version. Have a look into the installation section to see how that can be accomplished.

As a first step to get a network trained, we first need to actually define the net.
The major part of its implementation is skipped, as this guide is not intended to explain pytorch mechanics.
But crumpets requires just a bit of attention when using nets, because of the multi-gpu support and design of the TDL.
Loader’s return type is a minibatch of dictionaries.
Thus the network must be able to process dictionaries and also return such:

class Net(torch.nn.Module):
 def forward(self, sample):
 x = sample['image'].float()
 x = foo(x)
 sample['output'] = x
 return sample
net = Net()

Crumpets also offers an Unpacker Module for this, therefore equivalent:

class Net(torch.nn.Module):
 def forward(self, sample):
 return foo(sample)
net = Unpacker(Net(), output_key, input_key)

Also, when using pytorch, a slightly modified DataLoader is required, the TorchTurboDataLoader.
It basically returns torch tensors instead of numpy arrays and, as said, enables cuda and thus gpu support.
The loader can be used in either single or multi-gpu mode, which can be controlled using the devices parameter.
If this parameter is just a single string/int/torch.device like 'cuda:0', single mode is used and thus
the loader can be used exactly as its more simple ancestor discussed previously.
But if the parameter is iterable and potentially contains several cuda devices, it is crucial to wrap
a ParallelApply module around the net, since the return type of the loader changes.
The ParallelApply module will take care of that and run the net in parallel on multiple gpus if
such are available. At default it will also merge the results obtained in the forward passes
to be given on the main device.
Note that, if the loader shall use cpu exclusively, e.g. if no gpus are available,
one can set the devices parameter to 'cpu:0'.
There are helper methods in torch, namely is_single_torch_device()
and is_gpu_only(), that can be used to check the devices parameter.
Setting up a network and loader might look like this:

if not is_cpu_only(torch_devices):
 if is_single_torch_device(torch_devices):
 Unpacker(Net().cuda())
 else:
 network = ParallelApply(Unpacker(Net()))
else:
 network = Unpacker(Net())

abstract methods, implementation can be found in previous section
train = make_loader(
 train_set, batch_size, devices=devices
)
val = make_loader(
 val_set, batch_size, devices=devices
)

Note that some well known network architectures are reimplemented in crumpets which can be
imported and used without having the need of unpackers or additional care. Have a look at crumpets.torch.models.

As usually, training of networks requires an optimization methodology and perhaps a
scheduler for varying learning rates and parameters.
Again, this is not further explained, as in crumpets this does not differ from standard pytorch.
Have a look at pytorch tutorials.

optimizer = SGD([
 {'params': network.parameters(), 'lr': lr},
], momentum=momentum, weight_decay=1e-4)
scheduler = PolyPolicy(optimizer, epochs, 1)

Instead, a special handling again is required when it comes to losses.
As often stated, crumpets loaders all return dictionaries. This dictionary may contain
different variables depending on the worker’s design.
In general and for classification, it consists out of an image input and target label.
The default worker for those uses the most common keys, i.e. ‘image’ and ‘label’.
Also, if the sample is forwarded through a network, a third value is added to the dictionary.
The output of the network.
Usually its key is called ‘output’, but that depends on the implementation of the network itself.
Anyway, crumpets offers its own loss methods in crumpets.torch.loss, which are minor modifications of the standard torch ones.
They are able to handle dictionaries, but require to know the keys:

loss = CrossEntropyLoss(target_key='label', output_key='output')
if cuda:
 loss = loss.cuda()

It is helpful to define further metrics measuring networks quality.
Implementations of those can be found in crumpets.torch.metrics.
Similar to losses, they need to get the keys passed:

metric = AccuracyMetric(target_key='label', output_key='output')

Finally, all that is left to do, is constructing and running a crumpets Trainer instance, which will
take care of the complete training:

trainer = Trainer(
 network=network,
 optimizer=optimizer,
 loss=loss,
 metric=metric,
 train_policy=policy,
 val_policy=None,
 train_iter=train,
 val_iter=val,
 outdir=outdir
)
 with train:
 with val:
 trainer.train(epochs)

Snapshots, outputs and further logging information can be found in outdir.

Augmentation Guide

This tutorial introduces augmentations and data randomization.

A common problem of Deep Neural Network is to overfit, i.e. the network
fits well to the exact training data but does not generalize for other data.
There are multiple approaches on how to deal with this, known as regularization.
One method is to randomly transform the training data in each iteration.
This enhances the overall dataset, as augmented images are kind of unseen and
force the network to generalize for better adaptation.

Crumpets offers a fast, efficient and reliable way of doing this.

1. Usage

As stated, using augmentations with crumpets is easy,
as it is integrated in the TurboDataLoader.
More precise: in the workers.
This guide will not explain how to use the data loader in general.
Have a look at the Quick Start Guide.

All current augmentations work for images, thus workers handling images
need to be used. Crumpets offers an ImageWorker.
This worker and all its descendants can be used to work with images.
Random numbers generated to augment images are controlled by
RNG objects given as parameter ‘image_rng’.
Later the worker will, per iteration and image of the data loader,
pick random values in each range.
And lastly apply augmentations according to the chosen values
either using cpu or gpu, depending on your configuration.

In other words, all you need to do for using augmentations in crumpets,
is defining a range for each operation and pass those to the worker
template you need to define for the TurboDataLoader.

For instance, to create a custom RNG object:

from crumpets.presets import MixtureRNG
rng = MixtureRNG(
 blur_range=(0.002, 0.0025),
 brightness_range=(-0.4, 0.4),
 contrast_range=(-0.5, 0.5),
 noise_range=(0.01, 1.0),
 aspect_sigma=2/48.0,
 shift_range=(-1, 1),
 scale_range=(0.5, 1.5),
 vmirror=0.5,
 rotation_sigma=18,
 color_range=(-0.25, 0.25),
)

That object can then be given to the worker:

worker_template = ClassificationWorker(
 (sample_size, np.uint8),
 ((1,), np.int),
 image_rng=rng
)

Note that by default no augmentation is applied.
:module:`~crumpets.presets` provides presets like AUGMENTATION_TRAIN
that contain sensible values for image augmentation during training.

2. List of Available Augmentations

To get an intuition for the impact of different augmentations, we will
pick one example image and compare it’s unaugmented version to the
augmented ones.

And, as promised, sweet baby elephants will serve as an example:

[image: unaugmented]

	No Augmentation

Let’s have a look at what a TurboDataLoader returns without using augmentations,
but with a smaller target size and scaling using its longest edge:

worker_template = ClassificationWorker(
 ((3, 256, 256), np.uint8, (128, 128, 128)),
 ((1,), np.int),
 image_params=dict(scale_mode='longest'),
)

[image: no_augmentation]
The image of course is smaller. But also some grey background appeared.
This is due to the fact that neural networks usually work with
quadratic sample sizes, thus if the original image is scaled down
matching it’s longest edge to the target size, some pixels are left undefined.
This is filled up with custom background, default is black.

	Aspect

For applying only one specific augmentation with an exact intensity, we have to use the
no_augmentation() dictionary as a starting point.
We slightly modify it s.t. just the desired range is set.
In this case we set aspect ratio to 0.3 sigma.

from crumpets.presets import MixtureRNG
rng = MixtureRNG(prob=1.0, aspect_sigma=0.3)
worker_template = ClassificationWorker(
 ((3, 256, 256), np.uint8, (128, 128, 128)),
 image_params=dict(scale_mode='longest'),
 image_rng=rng
)

[image: aspect]

	Blur

To keep it simple, from now on only the update dictionary is presented:

>>> prob=1.0, blur_range=(1.50/448, 1.50/448)

[image: blur]

	Brightness

>>> prob=1.0, brightness_range=(0.45, 0.45)

[image: brightness]

	Color

>>> prob=1.0, color_range=(-0.3, 0.3)

[image: color]

	Contrast

>>> prob=1.0, contrast_range=(0.35, 0.35)

[image: contrast]

	Horizontal Mirror

>>> prob=1.0, hmirror=1

[image: hmirror]

	Noise

>>> prob=1.0, noise_range=(0.2, 0.2)

[image: noise]

	Rotation

>>> prob=1.0, rotation_sigma=24

[image: rotation]

	Scale

Zoom in:

>>> prob=1.0, scale_range=(1.4, 1.4)

[image: scale in]
Zoom out:

>>> prob=1.0, scale_range=(0.6, 0.6)

[image: scale out]

	Shear

>>> prob=1.0, shear_range=(0.06, 0.06)

[image: shear]

	Shift

Shift up:

>>> prob=1.0, shift_range=(1, 1)

[image: shift up]
Shift down:

>>> prob=1.0, shift_range=(-1, -1)

[image: shift down]

	Vertical Mirror

>>> prob=1.0, vmirror=1

[image: vmirror]

crumpets package

Subpackages

	crumpets.torch package
	Submodules
	crumpets.torch.augmentation_cuda module

	crumpets.torch.dataloader module

	crumpets.torch.loss module

	crumpets.torch.metrics module

	crumpets.torch.policy module

	crumpets.torch.randomizer module

	crumpets.torch.shm module

	crumpets.torch.trainer module

	crumpets.torch.utils module

	crumpets.workers package
	Subpackages
	crumpets.workers.saliency package

	crumpets.workers.segmentation package

Submodules

	crumpets.augmentation module

	crumpets.augmentation_cpu module

	crumpets.broker module

	crumpets.dataloader module

	crumpets.logging module

	crumpets.presets module

	crumpets.procname module

	crumpets.rng module

	crumpets.shm module

	crumpets.timing module

crumpets.torch package

	
crumpets.torch.is_cpu_only(val)

	checks if val is a value determining cpu-only cuda devices

	
crumpets.torch.is_single_torch_device(val)

	checks if val is a value determining a single cuda device

Submodules

	crumpets.torch.augmentation_cuda module

	crumpets.torch.dataloader module

	crumpets.torch.loss module

	crumpets.torch.metrics module

	crumpets.torch.policy module

	crumpets.torch.randomizer module

	crumpets.torch.shm module

	crumpets.torch.trainer module

	crumpets.torch.utils module

crumpets.torch.augmentation_cuda module

	
crumpets.torch.augmentation_cuda.add_blur(im, augs)

	A Function that takes a tensor that contains a batch of images
and a list of dictionaries that contain information about the
desired blur and takes this information to blur the image.

This function is hardware accelerated, so be sure that the im
is located on the GPU.

	Parameters

	
	im – the Tensor that contains the image data

	augs – a list of dictionaries.
Each dict should contain a ‘blur’ value.
This blur indicates the sigma value of the normal
distribution filter that is used to blur the image.
Also note that the blur value should be relative to
the image size, to achieve the same optical blur
effect on different image sizes.
For further information see
randomize_image()

	
crumpets.torch.augmentation_cuda.add_gamma(im_tensor, augs, maxv=None)

	A Function that takes a tensor that contains a Batch of Images
and a list of dictionaries that contain information about the
desired gamma values and takes those gamma values to apply
gamma correction to the images.
This function is hardware accelerated, so be sure that the
im_tensor is located on the GPU.

	Parameters

	
	im_tensor – the Tensor that contains the Image data

	augs – a list of dictionaries.
Each dict should contain a ‘color’, a ‘gamma_gray’,
a ‘gamma_color’, and a ‘contrast’ value to specify
the behaviour of the gamma augmentation.
For further information see
randomize_image()

	maxv – Maximum value of the entries.
This value is data type dependent, so be careful with it.
It defaults to “None”.
None indicates that the value is taken according to
the data type of the tensor.

	
crumpets.torch.augmentation_cuda.add_noise_other(im, augs, minv=None, maxv=None, internal_ftype=None)

	A Function that takes a tensor that contains a batch of images
and a list of dictionaries that contain information about the
desired noise and adds noise according to that to the images.

This function is Hardware accelerated, so be sure that the im
tensor is located on the GPU.

	Parameters

	
	im – the Tensor that contains the image data

	augs – a list of dictionaries.
Each dict should contain a ‘noise’ value to specify
the behaviour of the noise augmentation.
For further information see
randomize_image()

	minv – Minimum value of the entries.
This value is data type dependent, so be careful with it.
It defaults to “None”.
None indicates that the value is taken according
to the data type of the tensor.

	maxv – Maximum value of the entries.
This value is data type dependent, so be careful with it.
It defaults to “None”.
None indicates that the value is taken according
to the data type of the tensor.

	internal_ftype – The type that is used internally to
compute the noise.
For most types the internal type is float32.
The type defaults to None, what indicates
that a fitting type is chosen according
to the input type.

	
crumpets.torch.augmentation_cuda.add_noise_rgb(im, augs, minv=None, maxv=None, internal_ftype=None)

	A Function that takes a tensor that contains a batch of images
and a list of dictionaries that contain information about the
desired noise and takes this information to add noise according
to the that to the images.

This noise function tries to mimic the rgb noise of a camera
sensor, what means that the green value has a lower noise.

This function is hardware accelerated, so be sure that the im
is located on the GPU.

	Parameters

	
	im – the Tensor that contains the Image data

	augs – a list of dictionaries.
Each dict should contain a ‘noise’ value to specify
the behaviour of the noise augmentation.
For further information see
randomize_image()

	minv – Minimum value of the entries.
This value is data type dependent, so be careful with it.
It defaults to “None”.
None indicates that the value is taken according
to the data type of the tensor.

	maxv – Maximum value of the entries.
This value is data type dependent, so be careful with it.
It defaults to “None”.
None indicates that the value is taken according
to the data type of the tensor.

	internal_ftype – The type that is used internally to
compute the noise.
The type defaults to None, what indicates
that a fitting type is chosen according to
the input type.
For most types the internal type is float32.

crumpets.torch.dataloader module

	
class crumpets.torch.dataloader.TorchTurboDataLoader(iterable, batch_size, worker_template, nworkers, length=None, num_mini_batches=1, start_iteration=0, device='cuda:0', gpu_augmentation=False, shared_memory=True)

	Bases: crumpets.dataloader.TurboDataLoader

TorchTurboDataLoader is a subclass of
TurboDataLoader
intended for use with the Pytorch framework.
It produces torch tensors instead of numpy arrays.

See TurboDataLoader
for more details on its operation.

	Parameters

	
	iterable – An iterable providing a sample per iteration.

	batch_size – The amount of samples per batch.

	worker_template – An actual worker instance, determines the kind of processing.
Has to inherit crumpets.broker.Worker.

	nworkers – Number of workers processing the samples simultaneously.
worker_template is copied to create them.

	length – Specifies the length of the dataset.
Defaults to the actual length of iterable (if available).
If given differs from default,
the number of iterations per epoch is modified accordingly.

	num_mini_batches – Number of mini_batches per batch.

	start_iteration – Start the iteration counter from this number.
Useful when resuming training.

	shared_memory – Whether to use shared memory to transfer data from workers.
If 0 or False, shared memory is disabled.
If True, 2*nworkers shared buffers will be used.
If any number > 0, that number of buffers will be used.
A value of 1 is strongly discouraged to prevent deadlocks.
Permanently storing values returned by a loader may also
cause deadlocks.

	device – torch device to use,
Defaults to ‘cuda:0’.

	gpu_augmentation – Use a Randomizer
to calculate certain data augmentation operations on GPU.
This disables said operations on the CPU side.

crumpets.torch.loss module

	
class crumpets.torch.loss.CrossEntropyLoss(*args: Any, **kwargs: Any)

	Bases: torch.nn.

Wrapper for torch.nn.CrossEntropyLoss that accepts dictionaries as input.

	Parameters

	
	output_key – key in given sample dict which maps to the output tensor

	target_key – key in given sample dict which maps to the target tensor

	weight – a manual rescaling weight given to each
class. If given, it has to be a Tensor of size C. Otherwise, it is
treated as if having all ones.

	reduction – Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'.
'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of
elements in the output, 'sum': the output will be summed.
Default: 'mean'

	ignore_index – Specifies a target value that is ignored
and does not contribute to the input gradient. When
size_average is True, the loss is averaged over
non-ignored targets.

	
forward(sample)

	

	
class crumpets.torch.loss.L1Loss(*args: Any, **kwargs: Any)

	Bases: torch.nn.

Wrapper for torch.nn.L1Loss that accepts dictionaries as input.

	Parameters

	
	output_key – key in given sample dict which maps to the output tensor

	target_key – key in given sample dict which maps to the target tensor

	reduction – Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'.
'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of
elements in the output, 'sum': the output will be summed.
Default: 'mean'

	
forward(sample)

	

	
class crumpets.torch.loss.LabelSmoothing(*args: Any, **kwargs: Any)

	Bases: torch.nn.

Loss for LabelSmoothing based on NLL-Loss

	Parameters

	
	smoothing – label smoothing factor

	output_key – key in given sample dict which maps to the output tensor

	target_key – key in given sample dict which maps to the target tensor

	
forward(sample)

	

	
class crumpets.torch.loss.MSELoss(*args: Any, **kwargs: Any)

	Bases: torch.nn.

Wrapper for torch.nn.MSELoss that accepts dictionaries as input.

	Parameters

	
	output_key – key in given sample dict which maps to the output tensor

	target_key – key in given sample dict which maps to the target tensor

	reduction – Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'.
'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of
elements in the output, 'sum': the output will be summed.
Default: 'mean'

	
forward(sample)

	

	
class crumpets.torch.loss.NLLLoss(*args: Any, **kwargs: Any)

	Bases: torch.nn.

Wrapper for torch.nn.NLLLoss that accepts dictionaries as input.

	Parameters

	
	output_key – key in given sample dict which maps to the output tensor

	target_key – key in given sample dict which maps to the target tensor

	weight – a manual rescaling weight given to each
class. If given, it has to be a Tensor of size C. Otherwise, it is
treated as if having all ones.

	reduction – Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'.
'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of
elements in the output, 'sum': the output will be summed.
Default: 'mean'

	ignore_index – Specifies a target value that is ignored
and does not contribute to the input gradient. When
size_average is True, the loss is averaged over
non-ignored targets.

	
forward(sample)

	

	
class crumpets.torch.loss.NSSLoss(*args: Any, **kwargs: Any)

	Bases: torch.nn.

Loss for saliency applications that optimizes the
normalized scanpath saliency (NSS) metric.

The output of the network is normalized to zero-mean
and unit standard deviation.
Then the values at gaze locations given by the target image
tensor are maximized.

Since with NSS higher values are better and it does not have
an upper bound, the output is simply negated.
This means the loss will become negative at some point
if your network is learning.

	Parameters

	
	output_key – key in given sample dict which maps to the output tensor

	target_key – key in given sample dict which maps to the target tensor

	
forward(sample)

	

crumpets.torch.metrics module

	
class crumpets.torch.metrics.AccuracyMetric(top_k=1, output_key='output', target_key='label')

	Bases: crumpets.torch.metrics.Metric

Computes the top-k accuracy metric for given classification scores,
i.e. predicted class probabilities.
The metric is computed as {1 if target_i in top_k_predicted_classes_i else 0 for all i in n} / n

	Parameters

	
	output_key – the key with which the output is found in the input dictionary

	target_key – the key with which the target is found in the input dictionary

	
reset()

	

	
value()

	implement to return the currently stored metric.
:return: current metric

	
class crumpets.torch.metrics.AverageMetric(output_key='output', metric_key='average_metric')

	Bases: crumpets.torch.metrics.Metric

Computes a simple average metric for given values inside the output.

	Parameters

	
	output_key – the key with which the output is found in the input dictionary

	metric_key – the key with which the metric is to be stored in the output dictionary

	
value()

	implement to return the currently stored metric.
:return: current metric

	
class crumpets.torch.metrics.AverageValue

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
value()

	

	
class crumpets.torch.metrics.CombinedMetric(children)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A simple meta metric. Given metric instances, returns a collection of them.

	Parameters

	children – list of metric class instances

	
class crumpets.torch.metrics.ConfusionMatrix(nclasses=10, output_key='output', target_key='target_image', metric_key='confusion_matrix')

	Bases: crumpets.torch.metrics.Metric

Computes the confusion matrix for given classification scores,
i.e. predicted class probabilities.

	Parameters

	
	output_key – the key with which the output is found in the input dictionary

	target_key – the key with which the target is found in the input dictionary

	metric_key – the key with which the metric is to be stored in the output dictionary

	
get_true_false_positives()

	Calculate the true positive and false positive rates per class
:return: 2d-array. Cx3 array where the first column corresponds

to the true positives per class, the second column,
to the false positives per class and the last one,
the number of samples per class in total that have been
seen.

	
reset()

	

	
value()

	implement to return the currently stored metric.
:return: current metric

	
class crumpets.torch.metrics.MSELossMetric(output_key='output', target_key='target_image', metric_key='mse')

	Bases: crumpets.torch.metrics.Metric

Computes the mean squared error

	Parameters

	
	output_key – the key with which the output is found in the input dictionary

	target_key – the key with which the target is found in the input dictionary

	metric_key – the key with which the metric is to be stored in the output dictionary

	
value()

	implement to return the currently stored metric.
:return: current metric

	
class crumpets.torch.metrics.Metric(output_key='output', target_key='target_image', metric_key='metric')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Abstract class which is to be inherited by every metric.
As usual, this class is designed to handle crumpets dictionaries.

	Parameters

	
	output_key – the key with which the output is found in the input dictionary

	target_key – the key with which the target is found in the imput dictionary

	metric_key – the key with which the metric is to be stored in the output dictionary

	
reset()

	

	
abstract value()

	implement to return the currently stored metric.
:return: current metric

	
class crumpets.torch.metrics.NSSMetric(output_key='output', target_key='target_image', metric_key='nss')

	Bases: crumpets.torch.metrics.Metric

Computes the Normalized Scanpath Saliency (NSS) by Bylinskii et. al. (https://arxiv.org/pdf/1604.03605.pdf)

	Parameters

	
	output_key – the key with which the output is found in the input dictionary

	target_key – the key with which the target is found in the input dictionary

	metric_key – the key with which the metric is to be stored in the output dictionary

	
value()

	implement to return the currently stored metric.
:return: current metric

	
class crumpets.torch.metrics.NoopMetric(output_key='output', target_key='target_image', metric_key='metric')

	Bases: crumpets.torch.metrics.Metric

Provides the same API as a real metric but does nothing.
Can be used where some metric-like object is required,
but no actual metrics should be calculated.

	
value()

	implement to return the currently stored metric.
:return: current metric

crumpets.torch.policy module

	
class crumpets.torch.policy.NoopPolicy

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Just a noop Policy. Use it when you don’t want to modify the lr

	
step(*args, **kwargs)

	

	
class crumpets.torch.policy.PolyPolicy(*args: Any, **kwargs: Any)

	Bases: torch.optim.lr_scheduler.

A policy that can be described as a polynomial.

	Parameters

	
	optimizer – an optimizer object

	num_epochs – the number of epochs that this policy is defined for. Don’t use it longer than that, because this might cause unexpected behaviour

	power – power value

	last_epoch – The current state of the policy. This can be used to set the initial state of the policy for instance to change the policy during training.

	
get_lr()

	

	
class crumpets.torch.policy.RampPolicy(*args: Any, **kwargs: Any)

	Bases: torch.optim.lr_scheduler.

This Policy increases the learning rate step by step

	Parameters

	
	optimizer – an optimizer object

	ramp_epochs – the value where the plateau is reached

	last_epoch – The current state of the policy. This can be used to set the initial state of the policy for instance to change the policy during training.

	
get_lr()

	

	
step(epoch=None, metrics=None)

	

	
class crumpets.torch.policy.ReduceLROnPlateau(*args: Any, **kwargs: Any)

	Bases: torch.optim.lr_scheduler.

A policy that reduces the learning rate when the training progress reaches a plateau. It inherits from torch.optim.lr_scheduler.ReduceLROnPlateau and because of that shares the same interface

	
step(epoch=None, metrics=None)

	

	
class crumpets.torch.policy.SigmoidPolicy(*args: Any, **kwargs: Any)

	Bases: torch.optim.lr_scheduler.

A policy that can be described as a sigmoid. It can be described using the formula base_lr / (1 + math.exp(self.q * x), where x is last_epoch/num_epochs - 1

	Parameters

	
	optimizer – an optimizer object

	num_epochs – the number of epochs that this policy is defined for. Don’t use it longer than that, because this might cause unexpected behaviour

	q – q value to describe the behaviour of the policy.

	last_epoch – The current state of the policy. This can be used to set the initial state of the policy for instance to change the policy during training.

	
get_lr()

	

crumpets.torch.randomizer module

	
class crumpets.torch.randomizer.Randomizer(*args: Any, **kwargs: Any)

	Bases: torch.nn.

Given a network (or in general, some pytorch module), it is wrapped around the nets forward pass.
If the randomizer’s forward function is invoked, it first randomizes the image in the sample dictionary.
That means it basically works like randomize_image(),
which is usually applied to the image in one of the workers.
The major difference here is that all augmentations are gpu powered, and thus faster.
Also not all augmentation operations are supported. The randomizer does not rotate or resize.
The values used for augmenting are picked out of the dictionary.
Therefore the sample dictionary must contain these. Usually crumpets worker take care of that.

	Parameters

	net – some network the randomizer shall be wrapped around

	
cpu()

	

	
cuda(device_id=None)

	

	
forward(sample, *args, **kwargs)

	Applies different randomizing augmentations to input images and then
forwards result through net, if given.

	Parameters

	sample – dictonary with
{“image”: Tensor of shape n,c,h,w,

”augmentation”: list of augmentation parameters per image in batch}

	Returns

	modified dictionary with randomized image and network modified entries

crumpets.torch.shm module

	
class crumpets.torch.shm.DummyTensorManager(device='cuda:0')

	Bases: crumpets.shm.DummyBufferManager

Torch replacement for DummyBufferManager.
Returns torch tensors instead of numpy arrays when unpacking.

	Parameters

	device – output device; buffers are copied here when ready

	
next()

	

	
unpack(data)

	Unpack an msgpack message.
:param data: msgpack message bytes
:return: packed objects

	
class crumpets.torch.shm.SharedTensorManager(num_buffers, batch_size, buffer_specs, device='cuda:0', _queueclass=<bound method BaseContext.Queue of <multiprocessing.context.DefaultContext object>>)

	Bases: crumpets.shm.SharedBufferManager

	
crumpets.torch.shm.shared_tensor(shape, dtype=<class 'numpy.float32'>, device_type='cuda')

	Create a torch tensor that resides in shared memory.

	Parameters

	
	shape – array shape

	dtype – numpy dtype

	device_type – tensor.pin_memory() if ‘cuda’

	Returns

	np.ndarray

crumpets.torch.trainer module

	
class crumpets.torch.trainer.Trainer(network, optimizer, loss, metric, train_policy, val_policy, train_iter, val_iter, outdir, val_loss=None, val_metric=None, snapshot_interval=1, quiet=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The Trainer can be used to train a given network.
It alternately trains one epoch and validates
the resulting net one epoch.
Given loss is evaluated each batch,
gradients are computed and optimizer used to updated weights.
The loss is also passed to the policy,
which might update the learning rate.
Useful information about the training
flow is regularly printed to the console,
including an estimated time of arrival.
Loss, metric and snapshots per epoch are also logged in outdir,
for later investigation.
outdir is created if either quiet is False or snapshot_interval > 0.

	Parameters

	
	network – Some network that is to be trained.
If multiple gpus are used (i.e. multiple devices passed to the data loader)
a ParallelApply module has to be wrapped around.

	optimizer – some torch optimzer, e.g. SGD or ADAM, given the network’s parameters.

	loss – some loss function, e.g. CEL or MSE. Make sure to use crumpets.torch.loss
or implement your own ones, but do not use torch losses directly, since
they are not capable of handling crumpets sample style (i.e dictionaries).

	metric – some metric to further measure network’s quality.
Similar to losses, use crumpets.torch.metrics

	train_policy – some policy to maintain learning rates and such,
in torch usually called lr_schedulers.
After each iteration it, given the current loss,
updates learning rates and potentially other hyperparameters.

	val_policy – same as train_policy, but updates after validation epoch.

	train_iter – iterator for receiving training samples,
usually this means a TorchTurboDataLoader instance.

	val_iter – same as train_iter, but for retrieving validation samples.

	outdir – Output directory for logfiles and snapshots.
Is created including all parent directories if it does not exist.

	val_loss – same as loss, but applied during validation.
Default is None, which results in using loss again for validation.

	val_metric – same as metric, but applied during validation.
Default is None, which results in using metric again for validation.

	snapshot_interval – Number of epochs between snapshots.
Set to 0 or None to disable snapshots.
Default is 1, which means taking a snapshot after every epoch.

	quiet – If True, trainer will not print to console and will not attempt
to create a logfile.

	
add_hook(name, fun)

	Add a function hook for the given event.
Function must accept trainer state dictionary as first
positional argument the current, as well as further keyword
arguments depending on the type of hook.

The following events are available during training:

	‘train_begin’: run at the beginning of a training epoch

	‘train_end’: run after a training epoch has ended

	‘train_pre_forward’: run before the forward step;
receives kwarg sample

	‘train_forward’: run after the forward step;
receives kwargs metric, loss, and output

	‘train_backward’: run after the backward step;
receives kwargs metric, loss, and output

During validation the following hooks are available:

	‘val_begin’: run at the beginning of a training epoch

	‘val_end’: run after a training epoch has ended

	‘val_pre_forward’: run before the forward step;
receives kwarg sample

	‘val_forward’: run after the forward step;
receives kwargs metric, loss, and output

	Parameters

	
	name – The event name.
See above for available hook names and when they are executed.

	fun – A function that is to be invoked when given event occurs.
See above for method signature.

	
print_info(epoch)

	prints and logs current learning rates as well as the epoch.

	Parameters

	epoch – the current epoch.

	
remove_hook(name, fun)

	Remove the function hook with the given name.

	Parameters

	
	name – type of hook to remove

	fun – hook function object to remove

	Returns

	

	
snapshot(epoch)

	stores snapshot of current model (including optimizer state),
uses epoch for naming convention (but does always store current model).

	Parameters

	epoch – epoch for naming output file

	
train(num_epochs, start_epoch=0)

	starts the training, logs loss and metrics in logging file and prints progress
in the console, including an ETA. Also stores snapshots of current model each epoch.

	Parameters

	
	num_epochs – number of epochs to train

	start_epoch – the first epoch, default to 0.
Can be set higher for finetuning, etc.

	
train_epoch()

	trains one epoch, is invoked by train function. Usually not necessary to be called outside.

	Returns

	train metric result

	
validate_epoch(epoch)

	Validate once.
Invoked by train function.
Usually not necessary to be called outside.

	Returns

	val metric result

crumpets.torch.utils module

	
class crumpets.torch.utils.Normalize(*args: Any, **kwargs: Any)

	Bases: torch.nn.

	
forward(x)

	

	
class crumpets.torch.utils.Unpacker(*args: Any, **kwargs: Any)

	Bases: torch.nn.

	
forward(sample, *_, **__)

	

	
crumpets.torch.utils.filter_state(own_state, state_dict)

	

	
crumpets.torch.utils.other_type(s)

	

	
crumpets.torch.utils.resume(path, model, optimizer)

	Given parameters, extracts a training state, i.e. initializes a network and optimizer.

	Parameters

	
	path – path to a pytorch snapshot (including model and optimizer states)

	model – a network architecture for that the extracted weights are applied to

	optimizer – an optimizer for which the extracted optimizer parameters are applied to

	Returns

	the loaded snapshot

	
crumpets.torch.utils.save(path, iteration, model, optimizer, **kwargs)

	

	
crumpets.torch.utils.try_dicts(k, *ds)

	

	
crumpets.torch.utils.try_types(k, *ds)

	

crumpets.workers package

	
class crumpets.workers.ClassificationWorker(image, label, image_params=None, image_rng=None, **kwargs)

	Bases: crumpets.workers.ImageWorker

Worker for processing (Image, Label)-pairs for classification.

	Parameters

	
	image – tuple of image information (shape, dtype, fill_value);
fill_value is optional, defaults to 0

	label – tuple of label information (shape, dtype, fill_value);
fill_value is optional, defaults to 0

	image_params – dict of fixed image parameters;
overwrites random augmentation values

	image_rng – RNG object used for image augmentation,
see RNG and
randomize_args()

	
prepare(sample, batch, buffers)

	Implement this method to define the behavior of the BufferWorker
subclass. Results must be written to buffers and/or batch object.

	Parameters

	
	sample – individual sample object to process

	batch – the object the sample belongs to;
append values to lists as necessary

	buffers – output buffers to use for this sample

	
class crumpets.workers.FCNWorker(image, target_image, image_params=None, target_image_params=None, image_rng=None, **kwargs)

	Bases: crumpets.workers.ImageWorker

Worker for fully convolutional networks (FCN).
Produces image-target_image-pairs.

	Parameters

	
	image – tuple of image information (shape, dtype, fill_value);
fill_value is optional, defaults to 0

	target_image – tuple of target image information (shape, dtype, fill_value);
fill_value is optional, defaults to 0

	image_params – dict of fixed image parameters;
overwrites random augmentation values

	target_image_params – dict of fixed target image parameters;
overwrites random augmentation values

	image_rng – RNG object used for image augmentation,
see RNG and
randomize_args()

	
prepare(sample, batch, buffers)

	Implement this method to define the behavior of the BufferWorker
subclass. Results must be written to buffers and/or batch object.

	Parameters

	
	sample – individual sample object to process

	batch – the object the sample belongs to;
append values to lists as necessary

	buffers – output buffers to use for this sample

	
class crumpets.workers.ImageWorker(image, image_params=None, image_rng=None, **kwargs)

	Bases: crumpets.broker.BufferWorker

Worker for processing images of any kind.

	Parameters

	
	image – tuple of image information (shape, dtype, fill_value);
fill_value is optional, defaults to 0

	image_params – dict of fixed image parameters;
overwrites random augmentation values

	image_rng – RNG object used for image augmentation,
see RNG and
randomize_args()

	gpu_augmentation – disables augmentations for which
gpu versions are available (randomizer)

	
prepare(sample, batch, buffers)

	Implement this method to define the behavior of the BufferWorker
subclass. Results must be written to buffers and/or batch object.

	Parameters

	
	sample – individual sample object to process

	batch – the object the sample belongs to;
append values to lists as necessary

	buffers – output buffers to use for this sample

	
prepare_image(im, buffers, params, key)

	

Subpackages

	crumpets.workers.saliency package

	crumpets.workers.segmentation package

crumpets.workers.saliency package

	
class crumpets.workers.saliency.SaliencyWorker(image, target_image, image_params=None, target_image_params=None, image_rng=None, **kwargs)

	Bases: crumpets.workers.ImageWorker

Worker that outputs images and saliency maps created from raw
gaze locations.
Expects the following keys present in each sample:

	{“image”: encoded image data
	“experiments”: [experiment, …]}

Each experiment is first checked for fixations points under key
“fixations”. Falls back to key “locations” of raw gaze data
if no fixations are found.

The following parameters can be configured:

	image_params: see ImageWorker

	
	target_image_params:
	
	
	“sample_ratio” (default: 1):
	float in [0, 1]; percentage of experiments
sampled from the list of all experiments

	
	“jitter” (default: 0):
	add noise to the individual gaze locations;
sigma of a Gaussian distribution,
scaled by the size of the target_images:
noise ~ N(jitter * target_image_size)

	
	“interpolate” (default: False):
	use linear interpolation to map gaze locations
to the target_image

	
	“blur” (default: 0):
	apply Gaussian blur with sigma blur * target_image_size
to target_image

	
	“maxnorm” (default: False):
	apply maximum norm to target_image

	
prepare(sample, batch, buffers)

	Implement this method to define the behavior of the BufferWorker
subclass. Results must be written to buffers and/or batch object.

	Parameters

	
	sample – individual sample object to process

	batch – the object the sample belongs to;
append values to lists as necessary

	buffers – output buffers to use for this sample

	
crumpets.workers.saliency.check_range(points, h, w)

	

	
crumpets.workers.saliency.discretize_points(points, h, w)

	

	
crumpets.workers.saliency.interpolate_points(points, h, w)

	

	
crumpets.workers.saliency.multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-08)

	Draw random samples from a multivariate normal distribution.

The multivariate normal, multinormal or Gaussian distribution is a
generalization of the one-dimensional normal distribution to higher
dimensions. Such a distribution is specified by its mean and
covariance matrix. These parameters are analogous to the mean
(average or “center”) and variance (standard deviation, or “width,”
squared) of the one-dimensional normal distribution.

Note

New code should use the multivariate_normal method of a default_rng()
instance instead; please see the random-quick-start.

	mean1-D array_like, of length N
	Mean of the N-dimensional distribution.

	cov2-D array_like, of shape (N, N)
	Covariance matrix of the distribution. It must be symmetric and
positive-semidefinite for proper sampling.

	sizeint or tuple of ints, optional
	Given a shape of, for example, (m,n,k), m*n*k samples are
generated, and packed in an m-by-n-by-k arrangement. Because
each sample is N-dimensional, the output shape is (m,n,k,N).
If no shape is specified, a single (N-D) sample is returned.

	check_valid{ ‘warn’, ‘raise’, ‘ignore’ }, optional
	Behavior when the covariance matrix is not positive semidefinite.

	tolfloat, optional
	Tolerance when checking the singular values in covariance matrix.
cov is cast to double before the check.

	outndarray
	The drawn samples, of shape size, if that was provided. If not,
the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional
value drawn from the distribution.

Generator.multivariate_normal: which should be used for new code.

The mean is a coordinate in N-dimensional space, which represents the
location where samples are most likely to be generated. This is
analogous to the peak of the bell curve for the one-dimensional or
univariate normal distribution.

Covariance indicates the level to which two variables vary together.
From the multivariate normal distribution, we draw N-dimensional
samples, \(X = [x_1, x_2, ... x_N]\). The covariance matrix
element \(C_{ij}\) is the covariance of \(x_i\) and \(x_j\).
The element \(C_{ii}\) is the variance of \(x_i\) (i.e. its
“spread”).

Instead of specifying the full covariance matrix, popular
approximations include:

	Spherical covariance (cov is a multiple of the identity matrix)

	Diagonal covariance (cov has non-negative elements, and only on
the diagonal)

This geometrical property can be seen in two dimensions by plotting
generated data-points:

>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 100]] # diagonal covariance

Diagonal covariance means that points are oriented along x or y-axis:

>>> import matplotlib.pyplot as plt
>>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
>>> plt.plot(x, y, 'x')
>>> plt.axis('equal')
>>> plt.show()

Note that the covariance matrix must be positive semidefinite (a.k.a.
nonnegative-definite). Otherwise, the behavior of this method is
undefined and backwards compatibility is not guaranteed.

	1

	Papoulis, A., “Probability, Random Variables, and Stochastic
Processes,” 3rd ed., New York: McGraw-Hill, 1991.

	2

	Duda, R. O., Hart, P. E., and Stork, D. G., “Pattern
Classification,” 2nd ed., New York: Wiley, 2001.

>>> mean = (1, 2)
>>> cov = [[1, 0], [0, 1]]
>>> x = np.random.multivariate_normal(mean, cov, (3, 3))
>>> x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the
standard deviation:

>>> list((x[0,0,:] - mean) < 0.6)
[True, True] # random

	
crumpets.workers.saliency.show(name, mat)

	

crumpets.workers.segmentation package

	
class crumpets.workers.segmentation.SegmentationWorker(image, target_image, image_params=None, target_image_params=None, image_rng=None, **kwargs)

	Bases: crumpets.workers.FCNWorker

Worker for image segmentation tasks.
target_image_params defaults nearest neighbor interpolation,
no supersampling, and to disable all pixel-based
augmentations like brightness and color.

	
prepare(sample, batch, buffers)

	Implement this method to define the behavior of the BufferWorker
subclass. Results must be written to buffers and/or batch object.

	Parameters

	
	sample – individual sample object to process

	batch – the object the sample belongs to;
append values to lists as necessary

	buffers – output buffers to use for this sample

crumpets.augmentation module

	
crumpets.augmentation.calc_scale_ratio(source_size, target_size, scale, scale_mode)

	

	
crumpets.augmentation.decode_image(data, color, min_height=0, min_width=0, min_factor=2)

	

	
crumpets.augmentation.decode_opencv(data, color)

	

	
crumpets.augmentation.make_transform(source_size, target_size, angle=0, scale=1, aspect=1, shift=None, hmirror=False, vmirror=False, shear=None, scale_mode='shortest', __identity__=array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]))

	

	
crumpets.augmentation.randomize_image(im, size, background=None, color=True, angle=0, scale=1, shift=None, aspect=1, hmirror=False, vmirror=False, interp_method=1, gamma_gray=None, gamma_color=None, contrast=None, noise=None, blur=None, shear=None, is_rgb=True, scale_mode='shortest', supersampling=0, gpu_augmentation=False, do_rotate_and_resize=True)

	Randomizes image according to given parameters.

	Parameters

	
	im – image to be transformed.

	size – target size of resulting image.

	background – background color that fills areas in the output
where there is no pixel data;
can be number or tuple with same number of elements as channel

	color – Boolean that flags if image is black-white or colored.

	angle – degrees of rotation

	scale – Scales the image with respect to its target size.
scale=1.0 scales the image to fit perfectly
within the target size.
Based on scale_mode either the shorter or longer
edge is used as reference.
scale=2.0 doubles the length of the sides,
scale=0.5 halves it.

	shift – tuple of int (x,y) defining a shift of the picture, may create undefined space, if
source image is moved out of target image, filled up with background color.

	aspect – float of aspect ratio change

	hmirror – boolean flag for horizontal mirror

	vmirror – boolean flag for vertical mirror

	interp_method – some interpolation method. At the moment one of:
INTERP_NEAREST
INTERP_LINEAR
INTERP_CUBIC
INTERP_LANCZOS4
INTERP_AERA

	gamma_gray – float defining a black-white gamma

	gamma_color – tuple of floats defining a rgb gamma

	contrast – float between -1 and 1 defining a contrast change

	noise – float defining a noise strength

	blur – float defining a blur intensity, i.e. the standard deviation of a gaussian filter relative to image width

	shear – float defining shear intensity, i.e. the gradient of the horizontal edges.
A shear of 0.0 therefore creates a rectangular image.

	is_rgb – boolean that flags if rgb color encoding is used

	scale_mode – Either ‘shortest’ or ‘longest’.
Scale the image using either shortest or longest edge
as reference.
‘shortest’ crops part of the image if the aspect ratio
of image and target size do not match.
‘longest’ ensures that the whole image can be
fit into target size.
A scale > 1.0 makes it bigger than target image, thus parts of it get cut out.
A scale < 1.0 makes it smaller than target image, thus parts of the target image are undefined and
filled up with background.

	supersampling – supersampling factor, 1 turns off supersampling, 2 means 4 samples per pixel,
3 means 9 samples and so on;
default of 0 means choose best based on true image size, output size and scale factor

	gpu_augmentation – boolean that flags if gpu augmentations is used elsewhere and thus disables cpu augmentations in
this method for all augmentations where gpu versions are available.

	do_rotate_and_resize – boolean that flags if rotation and resize operations are used. Mostly used for test cases.
Should usually not be changed.

	Returns

	randomized image

	
crumpets.augmentation.rotate_and_resize(im, angle, target_size, scale, aspect, shift, method, background, hmirror, vmirror, shear=None, scale_mode='shortest', supersampling=0)

	

crumpets.augmentation_cpu module

	
crumpets.augmentation_cpu.add_blur(im, sigma)

	A Function that takes a numpy array that contains an Image and information about the desired blur
and blurs the image. It uses cv2 to blur the image, for more information about the sigma parameter have a look into
the cv2 documentation. cv.GaussianBlur

	Parameters

	
	im – the numpy array that contains the Image data

	sigma – the sigma of the gaussian blur

	
crumpets.augmentation_cpu.add_gamma(im, color, gamma_gray, gamma_color, contrast, _base_lut=None, _pos_contrast_lut=None, _neg_contrast_lut=None)

	A Function that takes a numpy array that contains an Image and information about the desired gamma
values and takes those gamma values to apply gamma correction to the images.

	Parameters

	
	im – the numpy array that contains the Image data

	color – flag that indicates if gamma_color should be used

	gamma_gray – gray parameter of the gamma correction

	gamma_color – color parameter of the gamma correction

	contrast – contrast parameter of the gamma correction

	_base_lut – a lookup table that can be precomputed. Defaults to None. None indicates that the default lookup

table should be used. The default lookup table is computed only once and then cached.
:param _pos_contrast_lut: similar to base_lut, just for the positive part of the contrast
:param _neg_contrast_lut: see positive… contrast is treated asymmetrically to give better results

	
crumpets.augmentation_cpu.add_noise_other(im, strength)

	A Function that takes a numpy array that contains an Image and information about the desired noise
and takes those values to add noise to the images.

	Parameters

	
	im – the numpy array that contains the Image data

	strength – strength of the noise

	
crumpets.augmentation_cpu.add_noise_rgb(im, strength)

	A Function that takes a numpy array that contains an Image and information about the desired rgb noise
and takes those values to add noise to the images. This function adds rgb noise, that mimics the noise of a
camera sensor, what means that green has less noise.

	Parameters

	
	im – the numpy array that contains the Image data

	strength – strength of the noise

crumpets.broker module

	
class crumpets.broker.BufferManager(batch_size, buffer_specs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

BufferManager is a compatibility class that replaces the SharedDictManager
for cases where shared memory is not used by the pipeline.
It creates buffers from buffer specs for use with the BufferWorker.

	
next()

	Return the dictionary of buffers as defined by buffer specs.

	Returns

	buffer dictionary

	
static pack(obj)

	Pack an object using msgpack.
Any shared object are replaced by references.

	Parameters

	obj – object to pack

	Returns

	msgpack message bytes

	
static unpack(data)

	Unpack an msgpack message.
Any shared object references are replaced with the object.

	Parameters

	data – msgpack message bytes

	Returns

	packed objects

	
class crumpets.broker.BufferWorker(buffer_manager=None, **kwargs)

	Bases: crumpets.broker.Worker

Base class for workers that use constant-size buffers.

	Parameters

	
	buffer_manager – Dict of buffer specs (shape, dtype, fill_value).
fill_value is optional and defaults to 0.
It must be either a scalar or iterable of length equal to
the number of channels in the respective image.

	param_groups – Dict of fixed parameter dicts.
To be used in conjunction with buffers of the same key.

	kwargs – Passed to broker.Worker.

	
add_buffer(key, buf)

	Register a new buffer with the worker.

	Parameters

	
	key – name of the buffer

	buf – buffer spec or array to use as template

	
add_params(key, params, default=None)

	Add a parameter group to the worker.

	Parameters

	
	key – name of the parameters

	params – parameter object, usually dictionary

	default – default value to use if params is None

	
get_buffer_manager()

	Returns the current buffer manager.
May be None.
:return: BufferManager or SharedBufferManager object

	
abstract prepare(sample, batch, buffers)

	Implement this method to define the behavior of the BufferWorker
subclass. Results must be written to buffers and/or batch object.

	Parameters

	
	sample – individual sample object to process

	batch – the object the sample belongs to;
append values to lists as necessary

	buffers – output buffers to use for this sample

	
process(request)

	
	Implement this method to define worker behavior.
	Can return an iterable to create several batches from one input.
This method can return an iterable or define a generator
with the yield keyword.
For instance: process()

	.
	
	param data

	multipart zmq message from Producer to process

	return

	iterable of zmq messages to send to Consumer

	
set_buffer_manager(buffer_manager)

	Set the buffer manager to be used by this worker.
Can be None, in which case a BufferManager will
be created as necessary.

	Parameters

	buffer_manager – a BufferManager or SharedBufferManager object, or None

	
class crumpets.broker.Consumer(result_address, recv_timeout=2000, queue_length=3, bind=True, io_threads=1)

	Bases: crumpets.broker.ThreadedConsumerBase

Basic threaded Consumer that receives und unpacks msgpack messages.

	
class crumpets.broker.ConsumerBase(result_address, recv_timeout=1000, queue_length=3, bind=True, io_threads=1)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Abstract base class for Consumers, the final pipeline stage.
Implement the _transform method to define subclass behavior.

	
retrieve()

	

	
retrieve_data()

	

	
stop()

	

	
class crumpets.broker.Dispatcher(worker_template, nworkers, work_addresses, result_addresses, control_address, daemon=None, gpu_augmentation=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The Dispatcher creates worker processes from a worker template,
can starts and stops them and monitor their status.

	Parameters

	
	worker_template – instance of Worker subclass to use as template for workers;
copy.copy is used to create as many objects as needed

	nworkers – number of worker processes to start

	work_addresses – list of work addresses to use; cycled through

	result_addresses – list of result addresses to use; cycles through

	control_address – control address workers can send status updates on

	daemon – daemon flag for processes, see multiprocessing.Process

	gpu_augmentation – bool passed to workers, true disables cpu augmentations
where gpu versions are available in randomizer;
if None worker_template.gpu_augmentation is used

	
active()

	True if any workers are alive.

	
start()

	

	
stop()

	

	
terminate()

	

	
class crumpets.broker.Pipeline(worker_template, nworkers, iterable, batch_size, work_addresses, result_addresses, producer_kwargs=None, control_address=None, gpu_augmentation=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
start()

	

	
stop()

	

	
class crumpets.broker.Producer(work_addresses, iterable, batch, queue_length=8, io_threads=1)

	Bases: crumpets.broker.ProducerBase

Producer implementation that reads sequentially from arbitrary
iterable objects. Items must be a msgpack messages that are
understood by the workers.
:param iterable:

iterable of msgpack messages

	Parameters

	batch – batch size for workers

	
yield_requests()

	

	
class crumpets.broker.ProducerBase(work_addresses, daemon=True, queue_length=8, io_threads=1)

	Bases: multiprocessing.context.Process

Abstract base class for producer processes.
Producers are the first stage of the pre-processing pipeline that
load data into memory and supply it to workers.
Implement the yield_requests method to customize its behavior.

	Parameters

	
	work_addresses – List of worker addresses the producer pushes work to;
cycled through for load balancing

	daemon – Flag whether this Producer is a daemon process;
see multiprocessing.Process

	queue_length – Length of send queue per worker socket

	io_threads – Number of IO threads to use; 1 is fine for almost all cases

	
run()

	Method to be run in sub-process; can be overridden in sub-class

	
stop()

	

	
yield_requests()

	

	
class crumpets.broker.Proxy(in_address, out_address, queue_length=1, daemon=True)

	Bases: multiprocessing.context.Process

Utility class that receives and redirects zmq PULL/PUSH streams.

	
run()

	Method to be run in sub-process; can be overridden in sub-class

	
class crumpets.broker.ThreadedConsumerBase(result_address, recv_timeout=2000, queue_length=3, bind=True, io_threads=1)

	Bases: crumpets.broker.ConsumerBase

Abstract base class for Consumers that receive and transform data
on a separate thread.
Implement the _transform method to define subclass behavior.

	
retrieve()

	

	
stop()

	

	
class crumpets.broker.Value(*_, **__)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
class crumpets.broker.Worker(timeout=1000, daemon=True, gpu_augmentation=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Abstract base class for workers.
Implement the process method to define the behavior of subclasses.

Note

set_addresses must be called before starting a worker.
The TurboDataLoader does this for you.

	Parameters

	
	timeout – zmq socket timeout in milliseconds

	daemon – set daemon flag - used in process

	gpu_augmentation – set GPU augmentation flag

	
inner()

	

	
abstract process(data)

	
Implement this method to define worker behavior.
Can return an iterable to create several batches from one input.
This method can return an iterable or define a generator
with the yield keyword.
For instance: process()

	.
	
	param data

	multipart zmq message from Producer to process

	return

	iterable of zmq messages to send to Consumer

	
run()

	Starts the worker process.

	
set_addresses(work, result, control)

	Set all required zmq addresses.
Required before run can be invoked.

	Parameters

	
	work – address where work is received on

	result – results are pushed to this address

	control – control message are sent here, e.g.,
exceptions that occurred while processing

	
set_gpu_augmentation(val)

	Sets the gpu_augmentation flag to given value, true disables
all cpu_augmentations for which a gpu version is available.
Note that this does not directly activate usage of gpu augmentation, as for that
a randomizer module is used, which usually
the TurboDataLoader takes care of.

	Parameters

	val – boolean flag

	
stop()

	Stops the worker process.

	
crumpets.broker.make_buffer(batchsize, shape, dtype, fill_value)

	Create an array for a given batch size and buffer spec.
Resulting array has shape = (batchsize,) + shape.

	Parameters

	
	batchsize – size of the first dimension

	shape – remaining shape of the array

	dtype – numpy dtype of the array

	fill_value – array comes pre-filled with this value

	Returns

	array

	
crumpets.broker.make_bufferspec(buf)

	Turn numpy.ndarray into buffer specification:
:param buf:

np.ndarray or buffer spec

	Returns

	tuple(shape, dtype, fill_value)

	
crumpets.broker.make_fill_value(shape, dtype, fill_value: Union[int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], Iterable] = 0)

	Create a numpy array for a given fill value.
This array can be used to fill any array of the given shape and dtype,
e.g., arr[:] = make_fill_value(arr.shape, arr.dtype, 17) will set all
elements of arr to 17.

Note: An implicit first dimension for the batch size is added.

fill_value can be a scalar or iterable.
Iterables are padded ith unit dimensions until they match the number
of dimensions of the given shape, e.g.:

>>> make_fill_value((3, 224, 224), np.uint8, (1, 2, 3))
array([[[[1]], [[2]], [[3]]]], dtype=uint8)

The resulting fill value array has shape (1, 3, 1, 1).

	Parameters

	
	shape – array shape

	dtype – array dtype

	fill_value – optional fill value(s)

	Returns

	fill value array

	
crumpets.broker.unpack(obj)

	

crumpets.dataloader module

	
class crumpets.dataloader.Consumer(result_address, control_address, recv_timeout=1000, bind=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A Consumer retrieves and forward processed samples from workers.

	Parameters

	
	result_address – address to retrieve processed samples from, workers send their results to it

	control_address – address to retrieve control messages from, such as exceptions raised in other processes

	recv_timeout – time to wait in ms until another receiving attempt is made

	bind – bind addresses instead of connecting to them

	
retrieve()

	

	
retrieve_data()

	

	
set_buffer_manager(buffer_manager)

	

	
start()

	Starts the sample retriever thread and listen on the control stream.

	
stop()

	Stops all threads opened by this consumer.

	
class crumpets.dataloader.Slicer(iterable)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
class crumpets.dataloader.TurboDataLoader(iterable, batch_size, worker_template, nworkers, length=None, num_mini_batches=1, start_iteration=0, shared_memory=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

TurboDataLoader provides fast parallel loading and processing of input data.
Use TorchTurboDataLoader
for a version supporting gpu and pytorch tensors.

Always use the loader inside of a with statement,
otherwise workers and consumer won’t start and stop.

`TurboDataLoader`s are intended to be used as iterators.
Each iteration yields the following data structure:

By default iteration starts at 0 and counts the number of
batches that the loader has yielded.
The list contains as many mini-batches as specified by
num_mini_batches.
Note that the number of samples across all mini-batches
is equal to batch_size,
i.e., batch_size must be divisible by num_mini_batches.
Finally each mini-batch is a dictionary that contains
key-value-pairs produced by the workers.
E.g., a ClassificationWorker
produces keys ‘image’, ‘label’, and ‘augmentation’.
Image and label are arrays and augmentation contains a list
of one dictionary per sample in the batch with parameters
used to create said sample.

Example usage:

model = make_some_model()
with loader:
 for epoch in range(epochs):
 for iteration, mini_batch in loader:
 for sample in mini_batch:
 sample = model(sample)
 images = sample['image']
 ...

Depending on parameters, the TurboDataLoaders starts several processes,
some of which cannot be started with the standard
“fork” method that Python uses in *nix systems.
This can result in crashing with an obscure error message.
Thus loaders need to be guarded against starting in non-main modules, i.e.:

if __name__ == "__main__":
 # stuff
 with loader:
 # other stuff

	Parameters

	
	iterable – An iterable providing a sample per iteration.

	batch_size – The amount of samples per batch.

	worker_template – An actual worker instance, determines the kind of processing.
Has to inherit crumpets.broker.Worker.

	nworkers – Number of workers processing the samples simultaneously.
worker_template is copied to create them.

	length – Specifies the length of the dataset.
Defaults to the actual length of iterable (if available).
If given differs from default,
the number of iterations per epoch is modified accordingly.

	num_mini_batches – Number of mini_batches per batch.

	start_iteration – Start the iteration counter from this number.
Useful when resuming training.

	shared_memory – Whether to use shared memory to transfer data from workers.
If 0 or False, shared memory is disabled.
If True, 2*nworkers shared buffers will be used.
If any number > 0, that number of buffers will be used.
A value of 1 is strongly discouraged to prevent deadlocks.
Permanently storing values returned by a loader may also
cause deadlocks.

	
set_epoch_iterations(iterations)

	Set number of iterations in one epoch.
Does not modify length.
:param iterations: number of iterations per epoch

	
set_length(length)

	Set the length of enclosed iterable.
Modifies epoch_iterations accordingly.
:param length: len(iterable)

	
start()

	Start the processing pipeline.

	
stop()

	Stop the processing pipeline.

	
crumpets.dataloader.make_addresses(uid, pipeline, numbers=(('work', 1), ('consume', 1)))

	

	
crumpets.dataloader.remove_files(files)

	

	
crumpets.dataloader.remove_ipc_handles(handles)

	

crumpets.logging module

	
class crumpets.logging.JSONLogger(name, filename, level=0)

	Bases: logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]

A subclass of the default Python Logger that uses
the JSONLines output format.

	
critical(**kwargs)

	Log ‘msg % args’ with severity ‘CRITICAL’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.critical(“Houston, we have a %s”, “major disaster”, exc_info=1)

	
debug(**kwargs)

	Log ‘msg % args’ with severity ‘DEBUG’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.debug(“Houston, we have a %s”, “thorny problem”, exc_info=1)

	
error(**kwargs)

	Log ‘msg % args’ with severity ‘ERROR’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.error(“Houston, we have a %s”, “major problem”, exc_info=1)

	
exception(exc_info=True, **kwargs)

	Convenience method for logging an ERROR with exception information.

	
fatal(**kwargs)

	Log ‘msg % args’ with severity ‘CRITICAL’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.critical(“Houston, we have a %s”, “major disaster”, exc_info=1)

	
info(**kwargs)

	Log ‘msg % args’ with severity ‘INFO’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.info(“Houston, we have a %s”, “interesting problem”, exc_info=1)

	
log(level, **kwargs)

	Log ‘msg % args’ with the integer severity ‘level’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.log(level, “We have a %s”, “mysterious problem”, exc_info=1)

	
warning(**kwargs)

	Log ‘msg % args’ with severity ‘WARNING’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.warning(“Houston, we have a %s”, “bit of a problem”, exc_info=1)

	
class crumpets.logging.ProgressPrinter(*_, **__)

	Bases: tqdm.std.tqdm

	
class crumpets.logging.SilentLogger

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Replacement logger for a logger that does not log anything.
Useful when running multiple processes, but not all of them
should log results.

	
critical(**kwargs)

	

	
debug(**kwargs)

	

	
error(**kwargs)

	

	
exception(exc_info=True, **kwargs)

	

	
fatal(**kwargs)

	

	
info(**kwargs)

	

	
log(level, **kwargs)

	

	
warning(**kwargs)

	

	
crumpets.logging.get_logfilename(prefix='', dateformat='%Y-%m-%dt%H-%M-%S', pathformat='%s%s.log')

	

	
crumpets.logging.make_printer(bar_format='{desc} {percentage:3.0f}% {elapsed}<{remaining}, {rate_fmt}{postfix}', miniters=0, mininterval=0.5, smoothing=0.1, file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>, **kwargs)

	Create a ProgressPrinter with appropriate parameters for training.
See tqdm documentation for details on parameters.
:return:

	
crumpets.logging.print(*args)

	Overwrites the builtin print function with tqdm.tqdm.write,
so things are printed properly while tqdm is active.
:param args:
:return:

crumpets.presets module

crumpets.procname module

	
crumpets.procname.setprocname(*_, **__)

	

crumpets.rng module

	
class crumpets.rng.MixtureRNG(prob=1, scale_range=None, shift_range=None, noise_range=None, brightness_range=None, color_range=None, contrast_range=None, blur_range=None, rotation_sigma=0, aspect_sigma=0, interpolations=None, hmirror=0, vmirror=0, shear_range=None)

	Bases: crumpets.rng.RNG

Old crumpets 2-style RNG that uses a mix of base probability,
Gaussian and uniform distributions to generate parameters.
See randomize_image() for more details
on allowed values.

	..note:
	*_range parameters must be 2 numbers (a,b).
They define a uniform distribution U[a,b]

	..note:
	*_sigma parameters define the standard deviation
of a Gaussian distribution.

	Parameters

	
	prob – probability that pixel-based augmentations are applied;
each augmentation rolls separately;
does not apply to spatial transforms like scale, rotation, etc.

	scale_range – influences the ‘scale’ value

	shift_range – influences the ‘shift’ values

	noise_range – influences the ‘noise’ value

	brightness_range – influences the ‘gamma_gray’ value;
brightness is converted to gamma by
convert_gamma()

	color_range – influences the ‘gamma_color’ values;
color values are converted to gamma by
convert_gamma()

	contrast_range – influences the ‘contrast’ value

	blur_range – influences the ‘blur’ value;
effective sigma for Gaussian blur is blur*image_width

	rotation_sigma – influences the ‘angle’ value

	aspect_sigma – influences the ‘aspect’ value

	interpolations – list of possible interpolation methods to use;
influences the ‘interp_method’ value

	hmirror – probability that horizontal mirror is applied;
influences the ‘hmirror’ value

	vmirror – probability that vertical mirror is applied;
influences the ‘vmirror’ value

	shear_range – influences the ‘shear’ values

	
class crumpets.rng.NoRNG

	Bases: crumpets.rng.RNG

Decidedly non-random RNG that simply returns an empty dict.
Useful for validation runs.

	
class crumpets.rng.RNG

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Abstract base class for augmentation random number generators (RNG).
For further information about the semantics of individual parameters,
have a look at randomize_image().

	
crumpets.rng.human2gamma(human)

	Convert some human-understandable value
to a value that is suitable for use in gamma correction.

Values outside of [-1,1] are clipped.

	Parameters

	human – value to convert to gamma

	Returns

	value suitable for gamma correction

crumpets.shm module

	
class crumpets.shm.DummyBufferManager

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Dummy replacement for SharedBufferManager.
Supports pack and unpack, but not next methods.

	
next()

	

	
pack(obj)

	Pack an object using msgpack.
:param obj: object to pack
:return: msgpack message bytes

	
unpack(data)

	Unpack an msgpack message.
:param data: msgpack message bytes
:return: packed objects

	
class crumpets.shm.SharedBufferManager(num_buffers, batch_size, buffer_specs, _queueclass=<bound method BaseContext.Queue of <multiprocessing.context.DefaultContext object>>)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

SharedBufferManager allows transparent sharing of memory between processes.
On creation the specified number of shared memory buffers are created
according to batch size and buffer specs.

next returns dict of numpy arrays
that point to a set of shared memory buffers.
next blocks until as set of buffers becomes available.
If more than one buffer spec is given, next will always return one buffer
for each spec and will only reuse a set of buffers when none of them are
in use.

pack serializes an arbitrary python object to msgpack format.
It detects shared buffers and replaces them with a “pointer”
as extension type EXT_SHARED.
This makes packing fast and independent of array size.

unpack detects “pointer” and replaces them with the shared buffer.

Usage:

	Sender calls next to get a set ob available buffers.

	Sender modifies buffers, calls pack and sends message to receiver.

	Receiver receives the message and calls unpack.

	Receiver uses the unpacked arrays and ensures that they are deleted
at some point, either by going out of scope or explicitly deleting them.
Storing shared buffers permanently may cause deadlocks.

	
close()

	Close the queue and unblock any processes waiting on next.

	
next()

	

	
pack(obj)

	Pack an object using msgpack.
Any shared object are replaced by references.
:param obj: object to pack
:return: msgpack message bytes

	
unpack(data)

	Unpack an msgpack message.
Any shared object references are replaced with the object.
:param data: msgpack message bytes
:return: packed objects

	
crumpets.shm.shared_array(shape, dtype=<class 'numpy.float32'>)

	Create a numpy array that resides in shared memory.
Memory is aligned to 8 bytes.

	Parameters

	
	shape – array shape

	dtype – numpy dtype

	Returns

	np.ndarray

crumpets.timing module

	
class crumpets.timing.ETATimer(goal)

	Bases: crumpets.timing.RemainingTimer

Simple modification of the RemainingTimer.
When called, instead of returning remainin time, return ETA (estimated time of arrival).

	
class crumpets.timing.RemainingTimer(goal)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Estimates remaining time of some operation.
Each time it is called, an internal counter is increased by 1.
The measured operation is assumed to be done once this counter reaches goal.
Out of the frequency of the calls one can compute an estimated speed and thus remaining time.

	Parameters

	goal – the number of calls until the operation is assumed to be done.

	
crumpets.timing.nicetime(seconds)

	formats given time in form of seconds to a nice string representation.

	Returns

	string representation of time

crumpets.torch package

	
crumpets.torch.is_cpu_only(val)

	checks if val is a value determining cpu-only cuda devices

	
crumpets.torch.is_single_torch_device(val)

	checks if val is a value determining a single cuda device

Submodules

	crumpets.torch.augmentation_cuda module

	crumpets.torch.dataloader module

	crumpets.torch.loss module

	crumpets.torch.metrics module

	crumpets.torch.policy module

	crumpets.torch.randomizer module

	crumpets.torch.shm module

	crumpets.torch.trainer module

	crumpets.torch.utils module

crumpets.torch.augmentation_cuda module

	
crumpets.torch.augmentation_cuda.add_blur(im, augs)

	A Function that takes a tensor that contains a batch of images
and a list of dictionaries that contain information about the
desired blur and takes this information to blur the image.

This function is hardware accelerated, so be sure that the im
is located on the GPU.

	Parameters

	
	im – the Tensor that contains the image data

	augs – a list of dictionaries.
Each dict should contain a ‘blur’ value.
This blur indicates the sigma value of the normal
distribution filter that is used to blur the image.
Also note that the blur value should be relative to
the image size, to achieve the same optical blur
effect on different image sizes.
For further information see
randomize_image()

	
crumpets.torch.augmentation_cuda.add_gamma(im_tensor, augs, maxv=None)

	A Function that takes a tensor that contains a Batch of Images
and a list of dictionaries that contain information about the
desired gamma values and takes those gamma values to apply
gamma correction to the images.
This function is hardware accelerated, so be sure that the
im_tensor is located on the GPU.

	Parameters

	
	im_tensor – the Tensor that contains the Image data

	augs – a list of dictionaries.
Each dict should contain a ‘color’, a ‘gamma_gray’,
a ‘gamma_color’, and a ‘contrast’ value to specify
the behaviour of the gamma augmentation.
For further information see
randomize_image()

	maxv – Maximum value of the entries.
This value is data type dependent, so be careful with it.
It defaults to “None”.
None indicates that the value is taken according to
the data type of the tensor.

	
crumpets.torch.augmentation_cuda.add_noise_other(im, augs, minv=None, maxv=None, internal_ftype=None)

	A Function that takes a tensor that contains a batch of images
and a list of dictionaries that contain information about the
desired noise and adds noise according to that to the images.

This function is Hardware accelerated, so be sure that the im
tensor is located on the GPU.

	Parameters

	
	im – the Tensor that contains the image data

	augs – a list of dictionaries.
Each dict should contain a ‘noise’ value to specify
the behaviour of the noise augmentation.
For further information see
randomize_image()

	minv – Minimum value of the entries.
This value is data type dependent, so be careful with it.
It defaults to “None”.
None indicates that the value is taken according
to the data type of the tensor.

	maxv – Maximum value of the entries.
This value is data type dependent, so be careful with it.
It defaults to “None”.
None indicates that the value is taken according
to the data type of the tensor.

	internal_ftype – The type that is used internally to
compute the noise.
For most types the internal type is float32.
The type defaults to None, what indicates
that a fitting type is chosen according
to the input type.

	
crumpets.torch.augmentation_cuda.add_noise_rgb(im, augs, minv=None, maxv=None, internal_ftype=None)

	A Function that takes a tensor that contains a batch of images
and a list of dictionaries that contain information about the
desired noise and takes this information to add noise according
to the that to the images.

This noise function tries to mimic the rgb noise of a camera
sensor, what means that the green value has a lower noise.

This function is hardware accelerated, so be sure that the im
is located on the GPU.

	Parameters

	
	im – the Tensor that contains the Image data

	augs – a list of dictionaries.
Each dict should contain a ‘noise’ value to specify
the behaviour of the noise augmentation.
For further information see
randomize_image()

	minv – Minimum value of the entries.
This value is data type dependent, so be careful with it.
It defaults to “None”.
None indicates that the value is taken according
to the data type of the tensor.

	maxv – Maximum value of the entries.
This value is data type dependent, so be careful with it.
It defaults to “None”.
None indicates that the value is taken according
to the data type of the tensor.

	internal_ftype – The type that is used internally to
compute the noise.
The type defaults to None, what indicates
that a fitting type is chosen according to
the input type.
For most types the internal type is float32.

crumpets.torch.dataloader module

	
class crumpets.torch.dataloader.TorchTurboDataLoader(iterable, batch_size, worker_template, nworkers, length=None, num_mini_batches=1, start_iteration=0, device='cuda:0', gpu_augmentation=False, shared_memory=True)

	Bases: crumpets.dataloader.TurboDataLoader

TorchTurboDataLoader is a subclass of
TurboDataLoader
intended for use with the Pytorch framework.
It produces torch tensors instead of numpy arrays.

See TurboDataLoader
for more details on its operation.

	Parameters

	
	iterable – An iterable providing a sample per iteration.

	batch_size – The amount of samples per batch.

	worker_template – An actual worker instance, determines the kind of processing.
Has to inherit crumpets.broker.Worker.

	nworkers – Number of workers processing the samples simultaneously.
worker_template is copied to create them.

	length – Specifies the length of the dataset.
Defaults to the actual length of iterable (if available).
If given differs from default,
the number of iterations per epoch is modified accordingly.

	num_mini_batches – Number of mini_batches per batch.

	start_iteration – Start the iteration counter from this number.
Useful when resuming training.

	shared_memory – Whether to use shared memory to transfer data from workers.
If 0 or False, shared memory is disabled.
If True, 2*nworkers shared buffers will be used.
If any number > 0, that number of buffers will be used.
A value of 1 is strongly discouraged to prevent deadlocks.
Permanently storing values returned by a loader may also
cause deadlocks.

	device – torch device to use,
Defaults to ‘cuda:0’.

	gpu_augmentation – Use a Randomizer
to calculate certain data augmentation operations on GPU.
This disables said operations on the CPU side.

crumpets.torch.loss module

	
class crumpets.torch.loss.CrossEntropyLoss(*args: Any, **kwargs: Any)

	Bases: torch.nn.

Wrapper for torch.nn.CrossEntropyLoss that accepts dictionaries as input.

	Parameters

	
	output_key – key in given sample dict which maps to the output tensor

	target_key – key in given sample dict which maps to the target tensor

	weight – a manual rescaling weight given to each
class. If given, it has to be a Tensor of size C. Otherwise, it is
treated as if having all ones.

	reduction – Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'.
'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of
elements in the output, 'sum': the output will be summed.
Default: 'mean'

	ignore_index – Specifies a target value that is ignored
and does not contribute to the input gradient. When
size_average is True, the loss is averaged over
non-ignored targets.

	
forward(sample)

	

	
class crumpets.torch.loss.L1Loss(*args: Any, **kwargs: Any)

	Bases: torch.nn.

Wrapper for torch.nn.L1Loss that accepts dictionaries as input.

	Parameters

	
	output_key – key in given sample dict which maps to the output tensor

	target_key – key in given sample dict which maps to the target tensor

	reduction – Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'.
'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of
elements in the output, 'sum': the output will be summed.
Default: 'mean'

	
forward(sample)

	

	
class crumpets.torch.loss.LabelSmoothing(*args: Any, **kwargs: Any)

	Bases: torch.nn.

Loss for LabelSmoothing based on NLL-Loss

	Parameters

	
	smoothing – label smoothing factor

	output_key – key in given sample dict which maps to the output tensor

	target_key – key in given sample dict which maps to the target tensor

	
forward(sample)

	

	
class crumpets.torch.loss.MSELoss(*args: Any, **kwargs: Any)

	Bases: torch.nn.

Wrapper for torch.nn.MSELoss that accepts dictionaries as input.

	Parameters

	
	output_key – key in given sample dict which maps to the output tensor

	target_key – key in given sample dict which maps to the target tensor

	reduction – Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'.
'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of
elements in the output, 'sum': the output will be summed.
Default: 'mean'

	
forward(sample)

	

	
class crumpets.torch.loss.NLLLoss(*args: Any, **kwargs: Any)

	Bases: torch.nn.

Wrapper for torch.nn.NLLLoss that accepts dictionaries as input.

	Parameters

	
	output_key – key in given sample dict which maps to the output tensor

	target_key – key in given sample dict which maps to the target tensor

	weight – a manual rescaling weight given to each
class. If given, it has to be a Tensor of size C. Otherwise, it is
treated as if having all ones.

	reduction – Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum'.
'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of
elements in the output, 'sum': the output will be summed.
Default: 'mean'

	ignore_index – Specifies a target value that is ignored
and does not contribute to the input gradient. When
size_average is True, the loss is averaged over
non-ignored targets.

	
forward(sample)

	

	
class crumpets.torch.loss.NSSLoss(*args: Any, **kwargs: Any)

	Bases: torch.nn.

Loss for saliency applications that optimizes the
normalized scanpath saliency (NSS) metric.

The output of the network is normalized to zero-mean
and unit standard deviation.
Then the values at gaze locations given by the target image
tensor are maximized.

Since with NSS higher values are better and it does not have
an upper bound, the output is simply negated.
This means the loss will become negative at some point
if your network is learning.

	Parameters

	
	output_key – key in given sample dict which maps to the output tensor

	target_key – key in given sample dict which maps to the target tensor

	
forward(sample)

	

crumpets.torch.metrics module

	
class crumpets.torch.metrics.AccuracyMetric(top_k=1, output_key='output', target_key='label')

	Bases: crumpets.torch.metrics.Metric

Computes the top-k accuracy metric for given classification scores,
i.e. predicted class probabilities.
The metric is computed as {1 if target_i in top_k_predicted_classes_i else 0 for all i in n} / n

	Parameters

	
	output_key – the key with which the output is found in the input dictionary

	target_key – the key with which the target is found in the input dictionary

	
reset()

	

	
value()

	implement to return the currently stored metric.
:return: current metric

	
class crumpets.torch.metrics.AverageMetric(output_key='output', metric_key='average_metric')

	Bases: crumpets.torch.metrics.Metric

Computes a simple average metric for given values inside the output.

	Parameters

	
	output_key – the key with which the output is found in the input dictionary

	metric_key – the key with which the metric is to be stored in the output dictionary

	
value()

	implement to return the currently stored metric.
:return: current metric

	
class crumpets.torch.metrics.AverageValue

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
value()

	

	
class crumpets.torch.metrics.CombinedMetric(children)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A simple meta metric. Given metric instances, returns a collection of them.

	Parameters

	children – list of metric class instances

	
class crumpets.torch.metrics.ConfusionMatrix(nclasses=10, output_key='output', target_key='target_image', metric_key='confusion_matrix')

	Bases: crumpets.torch.metrics.Metric

Computes the confusion matrix for given classification scores,
i.e. predicted class probabilities.

	Parameters

	
	output_key – the key with which the output is found in the input dictionary

	target_key – the key with which the target is found in the input dictionary

	metric_key – the key with which the metric is to be stored in the output dictionary

	
get_true_false_positives()

	Calculate the true positive and false positive rates per class
:return: 2d-array. Cx3 array where the first column corresponds

to the true positives per class, the second column,
to the false positives per class and the last one,
the number of samples per class in total that have been
seen.

	
reset()

	

	
value()

	implement to return the currently stored metric.
:return: current metric

	
class crumpets.torch.metrics.MSELossMetric(output_key='output', target_key='target_image', metric_key='mse')

	Bases: crumpets.torch.metrics.Metric

Computes the mean squared error

	Parameters

	
	output_key – the key with which the output is found in the input dictionary

	target_key – the key with which the target is found in the input dictionary

	metric_key – the key with which the metric is to be stored in the output dictionary

	
value()

	implement to return the currently stored metric.
:return: current metric

	
class crumpets.torch.metrics.Metric(output_key='output', target_key='target_image', metric_key='metric')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Abstract class which is to be inherited by every metric.
As usual, this class is designed to handle crumpets dictionaries.

	Parameters

	
	output_key – the key with which the output is found in the input dictionary

	target_key – the key with which the target is found in the imput dictionary

	metric_key – the key with which the metric is to be stored in the output dictionary

	
reset()

	

	
abstract value()

	implement to return the currently stored metric.
:return: current metric

	
class crumpets.torch.metrics.NSSMetric(output_key='output', target_key='target_image', metric_key='nss')

	Bases: crumpets.torch.metrics.Metric

Computes the Normalized Scanpath Saliency (NSS) by Bylinskii et. al. (https://arxiv.org/pdf/1604.03605.pdf)

	Parameters

	
	output_key – the key with which the output is found in the input dictionary

	target_key – the key with which the target is found in the input dictionary

	metric_key – the key with which the metric is to be stored in the output dictionary

	
value()

	implement to return the currently stored metric.
:return: current metric

	
class crumpets.torch.metrics.NoopMetric(output_key='output', target_key='target_image', metric_key='metric')

	Bases: crumpets.torch.metrics.Metric

Provides the same API as a real metric but does nothing.
Can be used where some metric-like object is required,
but no actual metrics should be calculated.

	
value()

	implement to return the currently stored metric.
:return: current metric

crumpets.torch.policy module

	
class crumpets.torch.policy.NoopPolicy

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Just a noop Policy. Use it when you don’t want to modify the lr

	
step(*args, **kwargs)

	

	
class crumpets.torch.policy.PolyPolicy(*args: Any, **kwargs: Any)

	Bases: torch.optim.lr_scheduler.

A policy that can be described as a polynomial.

	Parameters

	
	optimizer – an optimizer object

	num_epochs – the number of epochs that this policy is defined for. Don’t use it longer than that, because this might cause unexpected behaviour

	power – power value

	last_epoch – The current state of the policy. This can be used to set the initial state of the policy for instance to change the policy during training.

	
get_lr()

	

	
class crumpets.torch.policy.RampPolicy(*args: Any, **kwargs: Any)

	Bases: torch.optim.lr_scheduler.

This Policy increases the learning rate step by step

	Parameters

	
	optimizer – an optimizer object

	ramp_epochs – the value where the plateau is reached

	last_epoch – The current state of the policy. This can be used to set the initial state of the policy for instance to change the policy during training.

	
get_lr()

	

	
step(epoch=None, metrics=None)

	

	
class crumpets.torch.policy.ReduceLROnPlateau(*args: Any, **kwargs: Any)

	Bases: torch.optim.lr_scheduler.

A policy that reduces the learning rate when the training progress reaches a plateau. It inherits from torch.optim.lr_scheduler.ReduceLROnPlateau and because of that shares the same interface

	
step(epoch=None, metrics=None)

	

	
class crumpets.torch.policy.SigmoidPolicy(*args: Any, **kwargs: Any)

	Bases: torch.optim.lr_scheduler.

A policy that can be described as a sigmoid. It can be described using the formula base_lr / (1 + math.exp(self.q * x), where x is last_epoch/num_epochs - 1

	Parameters

	
	optimizer – an optimizer object

	num_epochs – the number of epochs that this policy is defined for. Don’t use it longer than that, because this might cause unexpected behaviour

	q – q value to describe the behaviour of the policy.

	last_epoch – The current state of the policy. This can be used to set the initial state of the policy for instance to change the policy during training.

	
get_lr()

	

crumpets.torch.randomizer module

	
class crumpets.torch.randomizer.Randomizer(*args: Any, **kwargs: Any)

	Bases: torch.nn.

Given a network (or in general, some pytorch module), it is wrapped around the nets forward pass.
If the randomizer’s forward function is invoked, it first randomizes the image in the sample dictionary.
That means it basically works like randomize_image(),
which is usually applied to the image in one of the workers.
The major difference here is that all augmentations are gpu powered, and thus faster.
Also not all augmentation operations are supported. The randomizer does not rotate or resize.
The values used for augmenting are picked out of the dictionary.
Therefore the sample dictionary must contain these. Usually crumpets worker take care of that.

	Parameters

	net – some network the randomizer shall be wrapped around

	
cpu()

	

	
cuda(device_id=None)

	

	
forward(sample, *args, **kwargs)

	Applies different randomizing augmentations to input images and then
forwards result through net, if given.

	Parameters

	sample – dictonary with
{“image”: Tensor of shape n,c,h,w,

”augmentation”: list of augmentation parameters per image in batch}

	Returns

	modified dictionary with randomized image and network modified entries

crumpets.torch.shm module

	
class crumpets.torch.shm.DummyTensorManager(device='cuda:0')

	Bases: crumpets.shm.DummyBufferManager

Torch replacement for DummyBufferManager.
Returns torch tensors instead of numpy arrays when unpacking.

	Parameters

	device – output device; buffers are copied here when ready

	
next()

	

	
unpack(data)

	Unpack an msgpack message.
:param data: msgpack message bytes
:return: packed objects

	
class crumpets.torch.shm.SharedTensorManager(num_buffers, batch_size, buffer_specs, device='cuda:0', _queueclass=<bound method BaseContext.Queue of <multiprocessing.context.DefaultContext object>>)

	Bases: crumpets.shm.SharedBufferManager

	
crumpets.torch.shm.shared_tensor(shape, dtype=<class 'numpy.float32'>, device_type='cuda')

	Create a torch tensor that resides in shared memory.

	Parameters

	
	shape – array shape

	dtype – numpy dtype

	device_type – tensor.pin_memory() if ‘cuda’

	Returns

	np.ndarray

crumpets.torch.trainer module

	
class crumpets.torch.trainer.Trainer(network, optimizer, loss, metric, train_policy, val_policy, train_iter, val_iter, outdir, val_loss=None, val_metric=None, snapshot_interval=1, quiet=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The Trainer can be used to train a given network.
It alternately trains one epoch and validates
the resulting net one epoch.
Given loss is evaluated each batch,
gradients are computed and optimizer used to updated weights.
The loss is also passed to the policy,
which might update the learning rate.
Useful information about the training
flow is regularly printed to the console,
including an estimated time of arrival.
Loss, metric and snapshots per epoch are also logged in outdir,
for later investigation.
outdir is created if either quiet is False or snapshot_interval > 0.

	Parameters

	
	network – Some network that is to be trained.
If multiple gpus are used (i.e. multiple devices passed to the data loader)
a ParallelApply module has to be wrapped around.

	optimizer – some torch optimzer, e.g. SGD or ADAM, given the network’s parameters.

	loss – some loss function, e.g. CEL or MSE. Make sure to use crumpets.torch.loss
or implement your own ones, but do not use torch losses directly, since
they are not capable of handling crumpets sample style (i.e dictionaries).

	metric – some metric to further measure network’s quality.
Similar to losses, use crumpets.torch.metrics

	train_policy – some policy to maintain learning rates and such,
in torch usually called lr_schedulers.
After each iteration it, given the current loss,
updates learning rates and potentially other hyperparameters.

	val_policy – same as train_policy, but updates after validation epoch.

	train_iter – iterator for receiving training samples,
usually this means a TorchTurboDataLoader instance.

	val_iter – same as train_iter, but for retrieving validation samples.

	outdir – Output directory for logfiles and snapshots.
Is created including all parent directories if it does not exist.

	val_loss – same as loss, but applied during validation.
Default is None, which results in using loss again for validation.

	val_metric – same as metric, but applied during validation.
Default is None, which results in using metric again for validation.

	snapshot_interval – Number of epochs between snapshots.
Set to 0 or None to disable snapshots.
Default is 1, which means taking a snapshot after every epoch.

	quiet – If True, trainer will not print to console and will not attempt
to create a logfile.

	
add_hook(name, fun)

	Add a function hook for the given event.
Function must accept trainer state dictionary as first
positional argument the current, as well as further keyword
arguments depending on the type of hook.

The following events are available during training:

	‘train_begin’: run at the beginning of a training epoch

	‘train_end’: run after a training epoch has ended

	‘train_pre_forward’: run before the forward step;
receives kwarg sample

	‘train_forward’: run after the forward step;
receives kwargs metric, loss, and output

	‘train_backward’: run after the backward step;
receives kwargs metric, loss, and output

During validation the following hooks are available:

	‘val_begin’: run at the beginning of a training epoch

	‘val_end’: run after a training epoch has ended

	‘val_pre_forward’: run before the forward step;
receives kwarg sample

	‘val_forward’: run after the forward step;
receives kwargs metric, loss, and output

	Parameters

	
	name – The event name.
See above for available hook names and when they are executed.

	fun – A function that is to be invoked when given event occurs.
See above for method signature.

	
print_info(epoch)

	prints and logs current learning rates as well as the epoch.

	Parameters

	epoch – the current epoch.

	
remove_hook(name, fun)

	Remove the function hook with the given name.

	Parameters

	
	name – type of hook to remove

	fun – hook function object to remove

	Returns

	

	
snapshot(epoch)

	stores snapshot of current model (including optimizer state),
uses epoch for naming convention (but does always store current model).

	Parameters

	epoch – epoch for naming output file

	
train(num_epochs, start_epoch=0)

	starts the training, logs loss and metrics in logging file and prints progress
in the console, including an ETA. Also stores snapshots of current model each epoch.

	Parameters

	
	num_epochs – number of epochs to train

	start_epoch – the first epoch, default to 0.
Can be set higher for finetuning, etc.

	
train_epoch()

	trains one epoch, is invoked by train function. Usually not necessary to be called outside.

	Returns

	train metric result

	
validate_epoch(epoch)

	Validate once.
Invoked by train function.
Usually not necessary to be called outside.

	Returns

	val metric result

crumpets.torch.utils module

	
class crumpets.torch.utils.Normalize(*args: Any, **kwargs: Any)

	Bases: torch.nn.

	
forward(x)

	

	
class crumpets.torch.utils.Unpacker(*args: Any, **kwargs: Any)

	Bases: torch.nn.

	
forward(sample, *_, **__)

	

	
crumpets.torch.utils.filter_state(own_state, state_dict)

	

	
crumpets.torch.utils.other_type(s)

	

	
crumpets.torch.utils.resume(path, model, optimizer)

	Given parameters, extracts a training state, i.e. initializes a network and optimizer.

	Parameters

	
	path – path to a pytorch snapshot (including model and optimizer states)

	model – a network architecture for that the extracted weights are applied to

	optimizer – an optimizer for which the extracted optimizer parameters are applied to

	Returns

	the loaded snapshot

	
crumpets.torch.utils.save(path, iteration, model, optimizer, **kwargs)

	

	
crumpets.torch.utils.try_dicts(k, *ds)

	

	
crumpets.torch.utils.try_types(k, *ds)

	

crumpets.workers package

	
class crumpets.workers.ClassificationWorker(image, label, image_params=None, image_rng=None, **kwargs)

	Bases: crumpets.workers.ImageWorker

Worker for processing (Image, Label)-pairs for classification.

	Parameters

	
	image – tuple of image information (shape, dtype, fill_value);
fill_value is optional, defaults to 0

	label – tuple of label information (shape, dtype, fill_value);
fill_value is optional, defaults to 0

	image_params – dict of fixed image parameters;
overwrites random augmentation values

	image_rng – RNG object used for image augmentation,
see RNG and
randomize_args()

	
prepare(sample, batch, buffers)

	Implement this method to define the behavior of the BufferWorker
subclass. Results must be written to buffers and/or batch object.

	Parameters

	
	sample – individual sample object to process

	batch – the object the sample belongs to;
append values to lists as necessary

	buffers – output buffers to use for this sample

	
class crumpets.workers.FCNWorker(image, target_image, image_params=None, target_image_params=None, image_rng=None, **kwargs)

	Bases: crumpets.workers.ImageWorker

Worker for fully convolutional networks (FCN).
Produces image-target_image-pairs.

	Parameters

	
	image – tuple of image information (shape, dtype, fill_value);
fill_value is optional, defaults to 0

	target_image – tuple of target image information (shape, dtype, fill_value);
fill_value is optional, defaults to 0

	image_params – dict of fixed image parameters;
overwrites random augmentation values

	target_image_params – dict of fixed target image parameters;
overwrites random augmentation values

	image_rng – RNG object used for image augmentation,
see RNG and
randomize_args()

	
prepare(sample, batch, buffers)

	Implement this method to define the behavior of the BufferWorker
subclass. Results must be written to buffers and/or batch object.

	Parameters

	
	sample – individual sample object to process

	batch – the object the sample belongs to;
append values to lists as necessary

	buffers – output buffers to use for this sample

	
class crumpets.workers.ImageWorker(image, image_params=None, image_rng=None, **kwargs)

	Bases: crumpets.broker.BufferWorker

Worker for processing images of any kind.

	Parameters

	
	image – tuple of image information (shape, dtype, fill_value);
fill_value is optional, defaults to 0

	image_params – dict of fixed image parameters;
overwrites random augmentation values

	image_rng – RNG object used for image augmentation,
see RNG and
randomize_args()

	gpu_augmentation – disables augmentations for which
gpu versions are available (randomizer)

	
prepare(sample, batch, buffers)

	Implement this method to define the behavior of the BufferWorker
subclass. Results must be written to buffers and/or batch object.

	Parameters

	
	sample – individual sample object to process

	batch – the object the sample belongs to;
append values to lists as necessary

	buffers – output buffers to use for this sample

	
prepare_image(im, buffers, params, key)

	

Subpackages

	crumpets.workers.saliency package

	crumpets.workers.segmentation package

crumpets.workers.saliency package

	
class crumpets.workers.saliency.SaliencyWorker(image, target_image, image_params=None, target_image_params=None, image_rng=None, **kwargs)

	Bases: crumpets.workers.ImageWorker

Worker that outputs images and saliency maps created from raw
gaze locations.
Expects the following keys present in each sample:

	{“image”: encoded image data
	“experiments”: [experiment, …]}

Each experiment is first checked for fixations points under key
“fixations”. Falls back to key “locations” of raw gaze data
if no fixations are found.

The following parameters can be configured:

	image_params: see ImageWorker

	
	target_image_params:
	
	
	“sample_ratio” (default: 1):
	float in [0, 1]; percentage of experiments
sampled from the list of all experiments

	
	“jitter” (default: 0):
	add noise to the individual gaze locations;
sigma of a Gaussian distribution,
scaled by the size of the target_images:
noise ~ N(jitter * target_image_size)

	
	“interpolate” (default: False):
	use linear interpolation to map gaze locations
to the target_image

	
	“blur” (default: 0):
	apply Gaussian blur with sigma blur * target_image_size
to target_image

	
	“maxnorm” (default: False):
	apply maximum norm to target_image

	
prepare(sample, batch, buffers)

	Implement this method to define the behavior of the BufferWorker
subclass. Results must be written to buffers and/or batch object.

	Parameters

	
	sample – individual sample object to process

	batch – the object the sample belongs to;
append values to lists as necessary

	buffers – output buffers to use for this sample

	
crumpets.workers.saliency.check_range(points, h, w)

	

	
crumpets.workers.saliency.discretize_points(points, h, w)

	

	
crumpets.workers.saliency.interpolate_points(points, h, w)

	

	
crumpets.workers.saliency.multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-08)

	Draw random samples from a multivariate normal distribution.

The multivariate normal, multinormal or Gaussian distribution is a
generalization of the one-dimensional normal distribution to higher
dimensions. Such a distribution is specified by its mean and
covariance matrix. These parameters are analogous to the mean
(average or “center”) and variance (standard deviation, or “width,”
squared) of the one-dimensional normal distribution.

Note

New code should use the multivariate_normal method of a default_rng()
instance instead; please see the random-quick-start.

	mean1-D array_like, of length N
	Mean of the N-dimensional distribution.

	cov2-D array_like, of shape (N, N)
	Covariance matrix of the distribution. It must be symmetric and
positive-semidefinite for proper sampling.

	sizeint or tuple of ints, optional
	Given a shape of, for example, (m,n,k), m*n*k samples are
generated, and packed in an m-by-n-by-k arrangement. Because
each sample is N-dimensional, the output shape is (m,n,k,N).
If no shape is specified, a single (N-D) sample is returned.

	check_valid{ ‘warn’, ‘raise’, ‘ignore’ }, optional
	Behavior when the covariance matrix is not positive semidefinite.

	tolfloat, optional
	Tolerance when checking the singular values in covariance matrix.
cov is cast to double before the check.

	outndarray
	The drawn samples, of shape size, if that was provided. If not,
the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional
value drawn from the distribution.

Generator.multivariate_normal: which should be used for new code.

The mean is a coordinate in N-dimensional space, which represents the
location where samples are most likely to be generated. This is
analogous to the peak of the bell curve for the one-dimensional or
univariate normal distribution.

Covariance indicates the level to which two variables vary together.
From the multivariate normal distribution, we draw N-dimensional
samples, \(X = [x_1, x_2, ... x_N]\). The covariance matrix
element \(C_{ij}\) is the covariance of \(x_i\) and \(x_j\).
The element \(C_{ii}\) is the variance of \(x_i\) (i.e. its
“spread”).

Instead of specifying the full covariance matrix, popular
approximations include:

	Spherical covariance (cov is a multiple of the identity matrix)

	Diagonal covariance (cov has non-negative elements, and only on
the diagonal)

This geometrical property can be seen in two dimensions by plotting
generated data-points:

>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 100]] # diagonal covariance

Diagonal covariance means that points are oriented along x or y-axis:

>>> import matplotlib.pyplot as plt
>>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
>>> plt.plot(x, y, 'x')
>>> plt.axis('equal')
>>> plt.show()

Note that the covariance matrix must be positive semidefinite (a.k.a.
nonnegative-definite). Otherwise, the behavior of this method is
undefined and backwards compatibility is not guaranteed.

	1

	Papoulis, A., “Probability, Random Variables, and Stochastic
Processes,” 3rd ed., New York: McGraw-Hill, 1991.

	2

	Duda, R. O., Hart, P. E., and Stork, D. G., “Pattern
Classification,” 2nd ed., New York: Wiley, 2001.

>>> mean = (1, 2)
>>> cov = [[1, 0], [0, 1]]
>>> x = np.random.multivariate_normal(mean, cov, (3, 3))
>>> x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the
standard deviation:

>>> list((x[0,0,:] - mean) < 0.6)
[True, True] # random

	
crumpets.workers.saliency.show(name, mat)

	

crumpets.workers.segmentation package

	
class crumpets.workers.segmentation.SegmentationWorker(image, target_image, image_params=None, target_image_params=None, image_rng=None, **kwargs)

	Bases: crumpets.workers.FCNWorker

Worker for image segmentation tasks.
target_image_params defaults nearest neighbor interpolation,
no supersampling, and to disable all pixel-based
augmentations like brightness and color.

	
prepare(sample, batch, buffers)

	Implement this method to define the behavior of the BufferWorker
subclass. Results must be written to buffers and/or batch object.

	Parameters

	
	sample – individual sample object to process

	batch – the object the sample belongs to;
append values to lists as necessary

	buffers – output buffers to use for this sample

crumpets.workers.saliency package

	
class crumpets.workers.saliency.SaliencyWorker(image, target_image, image_params=None, target_image_params=None, image_rng=None, **kwargs)

	Bases: crumpets.workers.ImageWorker

Worker that outputs images and saliency maps created from raw
gaze locations.
Expects the following keys present in each sample:

	{“image”: encoded image data
	“experiments”: [experiment, …]}

Each experiment is first checked for fixations points under key
“fixations”. Falls back to key “locations” of raw gaze data
if no fixations are found.

The following parameters can be configured:

	image_params: see ImageWorker

	
	target_image_params:
	
	
	“sample_ratio” (default: 1):
	float in [0, 1]; percentage of experiments
sampled from the list of all experiments

	
	“jitter” (default: 0):
	add noise to the individual gaze locations;
sigma of a Gaussian distribution,
scaled by the size of the target_images:
noise ~ N(jitter * target_image_size)

	
	“interpolate” (default: False):
	use linear interpolation to map gaze locations
to the target_image

	
	“blur” (default: 0):
	apply Gaussian blur with sigma blur * target_image_size
to target_image

	
	“maxnorm” (default: False):
	apply maximum norm to target_image

	
prepare(sample, batch, buffers)

	Implement this method to define the behavior of the BufferWorker
subclass. Results must be written to buffers and/or batch object.

	Parameters

	
	sample – individual sample object to process

	batch – the object the sample belongs to;
append values to lists as necessary

	buffers – output buffers to use for this sample

	
crumpets.workers.saliency.check_range(points, h, w)

	

	
crumpets.workers.saliency.discretize_points(points, h, w)

	

	
crumpets.workers.saliency.interpolate_points(points, h, w)

	

	
crumpets.workers.saliency.multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-08)

	Draw random samples from a multivariate normal distribution.

The multivariate normal, multinormal or Gaussian distribution is a
generalization of the one-dimensional normal distribution to higher
dimensions. Such a distribution is specified by its mean and
covariance matrix. These parameters are analogous to the mean
(average or “center”) and variance (standard deviation, or “width,”
squared) of the one-dimensional normal distribution.

Note

New code should use the multivariate_normal method of a default_rng()
instance instead; please see the random-quick-start.

	mean1-D array_like, of length N
	Mean of the N-dimensional distribution.

	cov2-D array_like, of shape (N, N)
	Covariance matrix of the distribution. It must be symmetric and
positive-semidefinite for proper sampling.

	sizeint or tuple of ints, optional
	Given a shape of, for example, (m,n,k), m*n*k samples are
generated, and packed in an m-by-n-by-k arrangement. Because
each sample is N-dimensional, the output shape is (m,n,k,N).
If no shape is specified, a single (N-D) sample is returned.

	check_valid{ ‘warn’, ‘raise’, ‘ignore’ }, optional
	Behavior when the covariance matrix is not positive semidefinite.

	tolfloat, optional
	Tolerance when checking the singular values in covariance matrix.
cov is cast to double before the check.

	outndarray
	The drawn samples, of shape size, if that was provided. If not,
the shape is (N,).

In other words, each entry out[i,j,...,:] is an N-dimensional
value drawn from the distribution.

Generator.multivariate_normal: which should be used for new code.

The mean is a coordinate in N-dimensional space, which represents the
location where samples are most likely to be generated. This is
analogous to the peak of the bell curve for the one-dimensional or
univariate normal distribution.

Covariance indicates the level to which two variables vary together.
From the multivariate normal distribution, we draw N-dimensional
samples, \(X = [x_1, x_2, ... x_N]\). The covariance matrix
element \(C_{ij}\) is the covariance of \(x_i\) and \(x_j\).
The element \(C_{ii}\) is the variance of \(x_i\) (i.e. its
“spread”).

Instead of specifying the full covariance matrix, popular
approximations include:

	Spherical covariance (cov is a multiple of the identity matrix)

	Diagonal covariance (cov has non-negative elements, and only on
the diagonal)

This geometrical property can be seen in two dimensions by plotting
generated data-points:

>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 100]] # diagonal covariance

Diagonal covariance means that points are oriented along x or y-axis:

>>> import matplotlib.pyplot as plt
>>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
>>> plt.plot(x, y, 'x')
>>> plt.axis('equal')
>>> plt.show()

Note that the covariance matrix must be positive semidefinite (a.k.a.
nonnegative-definite). Otherwise, the behavior of this method is
undefined and backwards compatibility is not guaranteed.

	1

	Papoulis, A., “Probability, Random Variables, and Stochastic
Processes,” 3rd ed., New York: McGraw-Hill, 1991.

	2

	Duda, R. O., Hart, P. E., and Stork, D. G., “Pattern
Classification,” 2nd ed., New York: Wiley, 2001.

>>> mean = (1, 2)
>>> cov = [[1, 0], [0, 1]]
>>> x = np.random.multivariate_normal(mean, cov, (3, 3))
>>> x.shape
(3, 3, 2)

The following is probably true, given that 0.6 is roughly twice the
standard deviation:

>>> list((x[0,0,:] - mean) < 0.6)
[True, True] # random

	
crumpets.workers.saliency.show(name, mat)

	

crumpets.workers.segmentation package

	
class crumpets.workers.segmentation.SegmentationWorker(image, target_image, image_params=None, target_image_params=None, image_rng=None, **kwargs)

	Bases: crumpets.workers.FCNWorker

Worker for image segmentation tasks.
target_image_params defaults nearest neighbor interpolation,
no supersampling, and to disable all pixel-based
augmentations like brightness and color.

	
prepare(sample, batch, buffers)

	Implement this method to define the behavior of the BufferWorker
subclass. Results must be written to buffers and/or batch object.

	Parameters

	
	sample – individual sample object to process

	batch – the object the sample belongs to;
append values to lists as necessary

	buffers – output buffers to use for this sample

examples package

Submodules

	examples.dataloader_datadings module

	examples.dataloader_simple module

	examples.pytorch_cifar10 module

	examples.pytorch_resnet module

examples.dataloader_datadings module

examples.dataloader_simple module

Simple dataloader example without using datadings.
The example prepares the included tinyset dataset,
which is given in ./tinyset and in the form of imangenet’s folder structure.
Afterwards crumpets TurboDataLoader is created and run through.

	
examples.dataloader_simple.main(show=True, wait_key=2000)

	

	
examples.dataloader_simple.prepare_dataset(dsdir)

	We have to prepare our example dataset tinyset s.t. we have encoded images and labels.
Crumpets default worker expect msgpack packed dictionaries.
Thus we have to create an iterable of packed elements, which unpacked are of form: {‘image’: …, ‘label’: …}.

	Parameters

	dsdir – path to dataset directory

	Returns

	iterable of msgpack packed directories

examples.pytorch_cifar10 module

Example usage of crumpets to train a custom model on Cifar10. Less complex compared to resnet example, since
less parameters are considered (some are just set to their default value to make the example more intuitive).
Cifar10 can either be processed to be in msgpack format or directly downloaded, using Datadings.
This example is capable of using multiple gpus.
If no datadir is given a default sample of 10 images is used
while the loader is told that there are 2000 images to mimic a real dataset.

	
class examples.pytorch_cifar10.Net(*args: Any, **kwargs: Any)

	Bases: torch.nn.

	
forward(sample)

	

	
examples.pytorch_cifar10.main(datadir, outdir, batch_size, epochs, lr, cuda=True)

	

	
examples.pytorch_cifar10.make_loader(file, batch_size, num_mini_batches, nworkers, image_rng=None, image_params=None, use_cuda=True, gpu_augmentation=True)

	

	
examples.pytorch_cifar10.make_policy(epochs, network, lr, momentum)

	

examples.pytorch_resnet module

 Python Module Index

 c |
 e

 		 	

 		
 c	

 	[image: -]
 	
 crumpets	

 	
 	
 crumpets.augmentation	

 	
 	
 crumpets.augmentation_cpu	

 	
 	
 crumpets.broker	

 	
 	
 crumpets.dataloader	

 	
 	
 crumpets.logging	

 	
 	
 crumpets.presets	

 	
 	
 crumpets.procname	

 	
 	
 crumpets.rng	

 	
 	
 crumpets.shm	

 	
 	
 crumpets.timing	

 	
 	
 crumpets.torch	

 	
 	
 crumpets.torch.augmentation_cuda	

 	
 	
 crumpets.torch.dataloader	

 	
 	
 crumpets.torch.loss	

 	
 	
 crumpets.torch.metrics	

 	
 	
 crumpets.torch.policy	

 	
 	
 crumpets.torch.randomizer	

 	
 	
 crumpets.torch.shm	

 	
 	
 crumpets.torch.trainer	

 	
 	
 crumpets.torch.utils	

 	
 	
 crumpets.workers	

 	
 	
 crumpets.workers.saliency	

 	
 	
 crumpets.workers.segmentation	

 		 	

 		
 e	

 	[image: -]
 	
 examples	

 	
 	
 examples.dataloader_simple	

 	
 	
 examples.pytorch_cifar10	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

A

 	
 	AccuracyMetric (class in crumpets.torch.metrics)

 	active() (crumpets.broker.Dispatcher method)

 	add_blur() (in module crumpets.augmentation_cpu)

 	(in module crumpets.torch.augmentation_cuda)

 	add_buffer() (crumpets.broker.BufferWorker method)

 	add_gamma() (in module crumpets.augmentation_cpu)

 	(in module crumpets.torch.augmentation_cuda)

 	
 	add_hook() (crumpets.torch.trainer.Trainer method)

 	add_noise_other() (in module crumpets.augmentation_cpu)

 	(in module crumpets.torch.augmentation_cuda)

 	add_noise_rgb() (in module crumpets.augmentation_cpu)

 	(in module crumpets.torch.augmentation_cuda)

 	add_params() (crumpets.broker.BufferWorker method)

 	AverageMetric (class in crumpets.torch.metrics)

 	AverageValue (class in crumpets.torch.metrics)

B

 	
 	BufferManager (class in crumpets.broker)

 	
 	BufferWorker (class in crumpets.broker)

C

 	
 	calc_scale_ratio() (in module crumpets.augmentation)

 	check_range() (in module crumpets.workers.saliency)

 	ClassificationWorker (class in crumpets.workers)

 	close() (crumpets.shm.SharedBufferManager method)

 	CombinedMetric (class in crumpets.torch.metrics)

 	ConfusionMatrix (class in crumpets.torch.metrics)

 	Consumer (class in crumpets.broker)

 	(class in crumpets.dataloader)

 	ConsumerBase (class in crumpets.broker)

 	cpu() (crumpets.torch.randomizer.Randomizer method)

 	critical() (crumpets.logging.JSONLogger method)

 	(crumpets.logging.SilentLogger method)

 	CrossEntropyLoss (class in crumpets.torch.loss)

 	
 crumpets

 	module

 	
 crumpets.augmentation

 	module

 	
 crumpets.augmentation_cpu

 	module

 	
 crumpets.broker

 	module

 	
 crumpets.dataloader

 	module

 	
 crumpets.logging

 	module

 	
 crumpets.presets

 	module

 	
 crumpets.procname

 	module

 	
 crumpets.rng

 	module

 	
 	
 crumpets.shm

 	module

 	
 crumpets.timing

 	module

 	
 crumpets.torch

 	module

 	
 crumpets.torch.augmentation_cuda

 	module

 	
 crumpets.torch.dataloader

 	module

 	
 crumpets.torch.loss

 	module

 	
 crumpets.torch.metrics

 	module

 	
 crumpets.torch.policy

 	module

 	
 crumpets.torch.randomizer

 	module

 	
 crumpets.torch.shm

 	module

 	
 crumpets.torch.trainer

 	module

 	
 crumpets.torch.utils

 	module

 	
 crumpets.workers

 	module

 	
 crumpets.workers.saliency

 	module

 	
 crumpets.workers.segmentation

 	module

 	cuda() (crumpets.torch.randomizer.Randomizer method)

D

 	
 	debug() (crumpets.logging.JSONLogger method)

 	(crumpets.logging.SilentLogger method)

 	decode_image() (in module crumpets.augmentation)

 	decode_opencv() (in module crumpets.augmentation)

 	
 	discretize_points() (in module crumpets.workers.saliency)

 	Dispatcher (class in crumpets.broker)

 	DummyBufferManager (class in crumpets.shm)

 	DummyTensorManager (class in crumpets.torch.shm)

E

 	
 	error() (crumpets.logging.JSONLogger method)

 	(crumpets.logging.SilentLogger method)

 	ETATimer (class in crumpets.timing)

 	
 examples

 	module

 	
 	
 examples.dataloader_simple

 	module

 	
 examples.pytorch_cifar10

 	module

 	exception() (crumpets.logging.JSONLogger method)

 	(crumpets.logging.SilentLogger method)

F

 	
 	fatal() (crumpets.logging.JSONLogger method)

 	(crumpets.logging.SilentLogger method)

 	FCNWorker (class in crumpets.workers)

 	filter_state() (in module crumpets.torch.utils)

 	forward() (crumpets.torch.loss.CrossEntropyLoss method)

 	(crumpets.torch.loss.L1Loss method)

 	(crumpets.torch.loss.LabelSmoothing method)

 	(crumpets.torch.loss.MSELoss method)

 	(crumpets.torch.loss.NLLLoss method)

 	(crumpets.torch.loss.NSSLoss method)

 	(crumpets.torch.randomizer.Randomizer method)

 	(crumpets.torch.utils.Normalize method)

 	(crumpets.torch.utils.Unpacker method)

 	(examples.pytorch_cifar10.Net method)

G

 	
 	get_buffer_manager() (crumpets.broker.BufferWorker method)

 	get_logfilename() (in module crumpets.logging)

 	get_lr() (crumpets.torch.policy.PolyPolicy method)

 	(crumpets.torch.policy.RampPolicy method)

 	(crumpets.torch.policy.SigmoidPolicy method)

 	
 	get_true_false_positives() (crumpets.torch.metrics.ConfusionMatrix method)

H

 	
 	human2gamma() (in module crumpets.rng)

I

 	
 	ImageWorker (class in crumpets.workers)

 	info() (crumpets.logging.JSONLogger method)

 	(crumpets.logging.SilentLogger method)

 	
 	inner() (crumpets.broker.Worker method)

 	interpolate_points() (in module crumpets.workers.saliency)

 	is_cpu_only() (in module crumpets.torch)

 	is_single_torch_device() (in module crumpets.torch)

J

 	
 	JSONLogger (class in crumpets.logging)

L

 	
 	L1Loss (class in crumpets.torch.loss)

 	LabelSmoothing (class in crumpets.torch.loss)

 	
 	log() (crumpets.logging.JSONLogger method)

 	(crumpets.logging.SilentLogger method)

M

 	
 	main() (in module examples.dataloader_simple)

 	(in module examples.pytorch_cifar10)

 	make_addresses() (in module crumpets.dataloader)

 	make_buffer() (in module crumpets.broker)

 	make_bufferspec() (in module crumpets.broker)

 	make_fill_value() (in module crumpets.broker)

 	make_loader() (in module examples.pytorch_cifar10)

 	make_policy() (in module examples.pytorch_cifar10)

 	make_printer() (in module crumpets.logging)

 	make_transform() (in module crumpets.augmentation)

 	Metric (class in crumpets.torch.metrics)

 	MixtureRNG (class in crumpets.rng)

 	
 module

 	crumpets

 	crumpets.augmentation

 	crumpets.augmentation_cpu

 	crumpets.broker

 	crumpets.dataloader

 	crumpets.logging

 	crumpets.presets

 	crumpets.procname

 	crumpets.rng

 	crumpets.shm

 	crumpets.timing

 	crumpets.torch

 	crumpets.torch.augmentation_cuda

 	crumpets.torch.dataloader

 	crumpets.torch.loss

 	crumpets.torch.metrics

 	crumpets.torch.policy

 	crumpets.torch.randomizer

 	crumpets.torch.shm

 	crumpets.torch.trainer

 	crumpets.torch.utils

 	crumpets.workers

 	crumpets.workers.saliency

 	crumpets.workers.segmentation

 	examples

 	examples.dataloader_simple

 	examples.pytorch_cifar10

 	
 	MSELoss (class in crumpets.torch.loss)

 	MSELossMetric (class in crumpets.torch.metrics)

 	multivariate_normal() (in module crumpets.workers.saliency)

N

 	
 	Net (class in examples.pytorch_cifar10)

 	next() (crumpets.broker.BufferManager method)

 	(crumpets.shm.DummyBufferManager method)

 	(crumpets.shm.SharedBufferManager method)

 	(crumpets.torch.shm.DummyTensorManager method)

 	nicetime() (in module crumpets.timing)

 	
 	NLLLoss (class in crumpets.torch.loss)

 	NoopMetric (class in crumpets.torch.metrics)

 	NoopPolicy (class in crumpets.torch.policy)

 	Normalize (class in crumpets.torch.utils)

 	NoRNG (class in crumpets.rng)

 	NSSLoss (class in crumpets.torch.loss)

 	NSSMetric (class in crumpets.torch.metrics)

O

 	
 	other_type() (in module crumpets.torch.utils)

P

 	
 	pack() (crumpets.broker.BufferManager static method)

 	(crumpets.shm.DummyBufferManager method)

 	(crumpets.shm.SharedBufferManager method)

 	Pipeline (class in crumpets.broker)

 	PolyPolicy (class in crumpets.torch.policy)

 	prepare() (crumpets.broker.BufferWorker method)

 	(crumpets.workers.ClassificationWorker method)

 	(crumpets.workers.FCNWorker method)

 	(crumpets.workers.ImageWorker method)

 	(crumpets.workers.saliency.SaliencyWorker method)

 	(crumpets.workers.segmentation.SegmentationWorker method)

 	
 	prepare_dataset() (in module examples.dataloader_simple)

 	prepare_image() (crumpets.workers.ImageWorker method)

 	print() (in module crumpets.logging)

 	print_info() (crumpets.torch.trainer.Trainer method)

 	process() (crumpets.broker.BufferWorker method)

 	(crumpets.broker.Worker method)

 	Producer (class in crumpets.broker)

 	ProducerBase (class in crumpets.broker)

 	ProgressPrinter (class in crumpets.logging)

 	Proxy (class in crumpets.broker)

R

 	
 	RampPolicy (class in crumpets.torch.policy)

 	randomize_image() (in module crumpets.augmentation)

 	Randomizer (class in crumpets.torch.randomizer)

 	ReduceLROnPlateau (class in crumpets.torch.policy)

 	RemainingTimer (class in crumpets.timing)

 	remove_files() (in module crumpets.dataloader)

 	remove_hook() (crumpets.torch.trainer.Trainer method)

 	remove_ipc_handles() (in module crumpets.dataloader)

 	reset() (crumpets.torch.metrics.AccuracyMetric method)

 	(crumpets.torch.metrics.ConfusionMatrix method)

 	(crumpets.torch.metrics.Metric method)

 	
 	resume() (in module crumpets.torch.utils)

 	retrieve() (crumpets.broker.ConsumerBase method)

 	(crumpets.broker.ThreadedConsumerBase method)

 	(crumpets.dataloader.Consumer method)

 	retrieve_data() (crumpets.broker.ConsumerBase method)

 	(crumpets.dataloader.Consumer method)

 	RNG (class in crumpets.rng)

 	rotate_and_resize() (in module crumpets.augmentation)

 	run() (crumpets.broker.ProducerBase method)

 	(crumpets.broker.Proxy method)

 	(crumpets.broker.Worker method)

S

 	
 	SaliencyWorker (class in crumpets.workers.saliency)

 	save() (in module crumpets.torch.utils)

 	SegmentationWorker (class in crumpets.workers.segmentation)

 	set_addresses() (crumpets.broker.Worker method)

 	set_buffer_manager() (crumpets.broker.BufferWorker method)

 	(crumpets.dataloader.Consumer method)

 	set_epoch_iterations() (crumpets.dataloader.TurboDataLoader method)

 	set_gpu_augmentation() (crumpets.broker.Worker method)

 	set_length() (crumpets.dataloader.TurboDataLoader method)

 	setprocname() (in module crumpets.procname)

 	shared_array() (in module crumpets.shm)

 	shared_tensor() (in module crumpets.torch.shm)

 	SharedBufferManager (class in crumpets.shm)

 	SharedTensorManager (class in crumpets.torch.shm)

 	show() (in module crumpets.workers.saliency)

 	SigmoidPolicy (class in crumpets.torch.policy)

 	SilentLogger (class in crumpets.logging)

 	
 	Slicer (class in crumpets.dataloader)

 	snapshot() (crumpets.torch.trainer.Trainer method)

 	start() (crumpets.broker.Dispatcher method)

 	(crumpets.broker.Pipeline method)

 	(crumpets.dataloader.Consumer method)

 	(crumpets.dataloader.TurboDataLoader method)

 	step() (crumpets.torch.policy.NoopPolicy method)

 	(crumpets.torch.policy.RampPolicy method)

 	(crumpets.torch.policy.ReduceLROnPlateau method)

 	stop() (crumpets.broker.ConsumerBase method)

 	(crumpets.broker.Dispatcher method)

 	(crumpets.broker.Pipeline method)

 	(crumpets.broker.ProducerBase method)

 	(crumpets.broker.ThreadedConsumerBase method)

 	(crumpets.broker.Worker method)

 	(crumpets.dataloader.Consumer method)

 	(crumpets.dataloader.TurboDataLoader method)

T

 	
 	terminate() (crumpets.broker.Dispatcher method)

 	ThreadedConsumerBase (class in crumpets.broker)

 	TorchTurboDataLoader (class in crumpets.torch.dataloader)

 	train() (crumpets.torch.trainer.Trainer method)

 	
 	train_epoch() (crumpets.torch.trainer.Trainer method)

 	Trainer (class in crumpets.torch.trainer)

 	try_dicts() (in module crumpets.torch.utils)

 	try_types() (in module crumpets.torch.utils)

 	TurboDataLoader (class in crumpets.dataloader)

U

 	
 	unpack() (crumpets.broker.BufferManager static method)

 	(crumpets.shm.DummyBufferManager method)

 	(crumpets.shm.SharedBufferManager method)

 	(crumpets.torch.shm.DummyTensorManager method)

 	(in module crumpets.broker)

 	
 	Unpacker (class in crumpets.torch.utils)

V

 	
 	validate_epoch() (crumpets.torch.trainer.Trainer method)

 	Value (class in crumpets.broker)

 	value() (crumpets.torch.metrics.AccuracyMetric method)

 	(crumpets.torch.metrics.AverageMetric method)

 	(crumpets.torch.metrics.AverageValue method)

 	(crumpets.torch.metrics.ConfusionMatrix method)

 	(crumpets.torch.metrics.Metric method)

 	(crumpets.torch.metrics.MSELossMetric method)

 	(crumpets.torch.metrics.NoopMetric method)

 	(crumpets.torch.metrics.NSSMetric method)

W

 	
 	warning() (crumpets.logging.JSONLogger method)

 	(crumpets.logging.SilentLogger method)

 	
 	Worker (class in crumpets.broker)

Y

 	
 	yield_requests() (crumpets.broker.Producer method)

 	(crumpets.broker.ProducerBase method)

 _images/no_augmentation.jpg

_images/noise.jpg

_images/example.jpg

_images/hmirror.jpg

_images/scale_out.jpg

_images/shear.jpg

_images/rotation.jpg

_images/scale_in.jpg

_images/shift_down.jpg

_images/shift_up.jpg

_images/brightness.jpg

_images/color.jpg

_images/aspect.jpg

_images/blur.jpg

_images/contrast.jpg

_images/vmirror.jpg

nav.xhtml

 Table of Contents

 		
 Crumpets - Delicious crumpets for training time

 		
 Quick Start Guide

 		
 1. Installation

 		
 2. Data Processing

 		
 3. Training

 		
 Augmentation Guide

 		
 1. Usage

 		
 2. List of Available Augmentations

 		
 crumpets package

 		
 Subpackages

 		
 crumpets.torch package

 		
 crumpets.workers package

 		
 Submodules

 		
 crumpets.augmentation module

 		
 crumpets.augmentation_cpu module

 		
 crumpets.broker module

 		
 crumpets.dataloader module

 		
 crumpets.logging module

 		
 crumpets.presets module

 		
 crumpets.procname module

 		
 crumpets.rng module

 		
 crumpets.shm module

 		
 crumpets.timing module

 		
 crumpets.torch package

 		
 Submodules

 		
 crumpets.torch.augmentation_cuda module

 		
 crumpets.torch.dataloader module

 		
 crumpets.torch.loss module

 		
 crumpets.torch.metrics module

 		
 crumpets.torch.policy module

 		
 crumpets.torch.randomizer module

 		
 crumpets.torch.shm module

 		
 crumpets.torch.trainer module

 		
 crumpets.torch.utils module

 		
 crumpets.workers package

 		
 Subpackages

 		
 crumpets.workers.saliency package

 		
 crumpets.workers.segmentation package

 		
 crumpets.workers.saliency package

 		
 crumpets.workers.segmentation package

 		
 examples package

 		
 Submodules

 		
 examples.dataloader_datadings module

 		
 examples.dataloader_simple module

 		
 examples.pytorch_cifar10 module

 		
 examples.pytorch_resnet module

_static/file.png

_static/tough-cookie512.png

_static/minus.png

_static/plus.png

